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1. Preface 
 
Some time ago I retired, yes, retired from any tenure, curriculum, 
examination, and other everyday obligations, by so became free for 
thinking, reading, researching to my delight using as many forces from my 
remaining as I like. Truly speaking only as many as my wife let me put to 
such superfluous matter like thinking. She believes that this is only a 
needless pulling the mouse, pressing buttons, but mainly stretching in the 
pampering chair, living a live of ease. From a certain point of view she has 
some truth as I decided to make effort to my delight as a technique of a 
retired. Still it is a kind of job, a research for which I had no time in my earlier 
life or for the sake of God I forgot. 
Anyhow I do make this work hoping there will other people being interest 
about. 
Did you dear Reader tried anytime to gather people, friends and family 
together to listen you, your newest discovery in your science? If yes, than 
you know already what a tremendous success to have one. This is how I feel 
now as I have, I found even more than one such community to listen to me 
speaking and projecting about networks, all their meaning, working, 
effecting to our life, and all these coming from my sitting before a 
computer, pulling mouse, living my ease of life and than writing all about. 
The other result is this little book, a kind of collected knowledge, science 
about the different kind of networks. It is not at all full and of course not a 
curriculum, but a certain way it is a guide trough the network science, 
understanding this new world, these new knowledge. 
Now some hints how to use this book. The simplest way just read through 
the table of contents and the one page long first chapter. Other people 
could choose the more interest from the chapters. The even deeper inquirer 
could read trough all of them and using the reach references also. 
I have to tell you again, this is a collection work, researching for the good 
enough and understandable texts for each topic. 
I hope you will use this either obtain knowledge or use as a breviary at 
work.  
I wish all readers turn the leaves of this book successfully. 
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2. Network science 
Network science is a new and emerging scientific discipline that examines 
the interconnections among diverse physical or engineered networks, 
information networks, biological networks, cognitive and semantic 
networks, and social networks. This field of science seeks to discover 
common principles, algorithms and tools that govern network behavior. 
The National Research Council defines Network Science as "the study of 
network representations of physical, biological, and social phenomena 
leading to predictive models of these phenomena." 

The study of networks has emerged in diverse disciplines as a means of 
analyzing complex relational data. The earliest known paper in this field is 
the famous Seven Bridges of Konigsberg written by Leonhard Euler in 1736. 
Euler's mathematical description of vertices and edges was the foundation 
of graph theory, a branch of mathematics that studies the properties of pair 
wise relations in a network structure. The field of graph theory continued to 
develop and found applications in chemistry (Sylvester, 1878). 
In the 1930s Jacob Moreno, a psychologist in the Gestalt tradition, arrived in 
the United States. He developed the sociogram and presented it to the 
public in April 1933 at a convention of medical scholars. Moreno claimed 
that "before the advent of sociometry no one knew what the interpersonal 
structure of a group 'precisely' looked like (Moreno, 1953). The sociogram 
was a representation of the social structure of a group of elementary school 
students. The boys were friends of boys and the girls were friends of girls 
with the exception of one boy who said he liked a single girl. The feeling 
was not reciprocated. This network representation of social structure was 
found so intriguing that it was printed in The New York Times (April 3, 1933, 
page 17). The sociogram has found many applications and has grown into 
the field of social network analysis. 
Probabilistic theory in network science developed as an off-shoot of graph 
theory with Paul Erdős and Alfréd Rényi's eight famous papers on random 
graphs. For social networks the exponential random graph model or p* 
graph is a notational framework used to represent the probability space of 
a tie occurring in a social network. An alternate approach to network 
probability structures is the network probability matrix, which models the 
probability of edges occurring in a network, based on the historic presence 
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or absence of the edge in a sample of networks. 
In the 1998, David Krackhardt and Kathleen Carley introduced the idea of a 
meta-network with the PCANS Model. They suggest that "all organizations 
are structured along these three domains, Individuals, Tasks, and 
Resources. Their paper introduced the concept that networks occur across 
multiple domains and that they are interrelated. This field has grown into 
another sub-discipline of network science called dynamic network analysis. 

More recently other network science efforts have focused on 
mathematically describing different network topologies. Duncan Watts 
reconciled empirical data on networks with mathematical representation, 
describing the small-world network. Albert-László Barabási and Reka Albert 
developed the scale-free network which is a loosely defined network 
topology that contains hub vertices with many connections, which grow in 
a way to maintain a constant ratio in the number of the connections versus 
all other nodes. Although many networks, such as the internet, appear to 
maintain this aspect, other networks have long tailed distributions of nodes 
that only approximate scale free ratios. 
Today, network science is an exciting and growing field. Scientists from 
many diverse fields are working together. Network science holds the 
promise of increasing collaboration across disciplines, by sharing data, 
algorithms, and software tools. 
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3. Network theory 
Network theory is an area of computer science and network science and 
part of graph theory. It has application in many disciplines including particle 
physics, computer science, biology, economics, operations research, and 
sociology. Network theory concerns itself with the study of graphs as a 
representation of either symmetric relations or, more generally, of 
asymmetric relations between discrete objects. Applications of network 
theory include logistical networks, the World Wide Web, gene regulatory 
networks, metabolic networks, social networks, epistemological networks, 
etc. See list of network theory topics for more examples. 

Network optimization 

Network problems that involve finding an optimal way of doing something 
are studied under the name of combinatorial optimization. Examples 
include network flow, shortest path problem, transport problem, 
transshipment problem, location problem, matching problem, assignment 
problem, packing problem, routing problem, Critical Path Analysis and PERT 
(Program Evaluation & Review Technique). 

Network analysis 

Social network analysis 

Social network analysis maps relationships between individuals in social 
networks.[1] Such individuals are often persons, but may be groups 
(including cliques and cohesive blocks), organizations, nation states, web 
sites, or citations between scholarly publications (scientometrics). 

Network analysis, and its close cousin traffic analysis, has significant use in 
intelligence. By monitoring the communication patterns between the 
network nodes, its structure can be established. This can be used for 
uncovering insurgent networks of both hierarchical and leaderless nature. 

Biological network analysis 
With the recent explosion of publicly available high throughput biological 
data, the analysis of molecular networks has gained significant interest. The 
type of analysis in this content are closely related to social network analysis, 
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but often focusing on local patterns in the network. For example network 
motifs are small subgraphs that are over-represented in the network. 
Activity motifs are similar over-represented patterns in the attributes of 
nodes and edges in the network that are over represented given the 
network structure. 

Link analysis 
Link analysis is a subset of network analysis, exploring associations between 
objects. An example may be examining the addresses of suspects and 
victims, the telephone numbers they have dialed and financial transactions 
that they have partaken in during a given timeframe, and the familial 
relationships between these subjects as a part of police investigation.  
Link analysis here provides the crucial relationships and associations 
between very many objects of different types that are not apparent from 
isolated pieces of information. 
 Computer-assisted or fully automatic computer-based link analysis is 
increasingly employed by banks and insurance agencies in fraud detection, 
by telecommunication operators in telecommunication network analysis, by 
medical sector in epidemiology and pharmacology, in law enforcement 
investigations, by search engines for relevance rating (and conversely by 
the spammers for spamdexing and by business owners for search engine 
optimization), and everywhere else where relationships between many 
objects have to be analyzed. 

Web link analysis 
Several Web search ranking algorithms use link-based centrality metrics, 
including (in order of appearance) Marchiori's Hyper Search, Google's 
PageRank, Kleinberg's HITS algorithm, and the TrustRank algorithm. Link 
analysis is also conducted in information science and communication 
science in order to understand and extract information from the structure 
of collections of web pages. For example the analysis might be of the 
interlinking between politicians' web sites or blogs. 

Centrality measures 
Information about the relative importance of nodes and edges in a graph 
can be obtained through centrality measures, widely used in disciplines like 
sociology. For example, eigenvector centrality uses the eigenvectors of the 
adjacency matrix to determine nodes that tend to be frequently visited. 
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Spread of content in networks 

Content in a complex network can spread via two major methods: 
conserved spread and non-conserved spread.[2] In conserved spread, the 
total amount of content that enters a complex network remains constant 
as it passes through. The model of conserved spread can best be 
represented by a pitcher containing a fixed amount of water being poured 
into a series of funnels connected by tubes . Here, the pitcher represents 
the original source and the water is the content being spread. The funnels 
and connecting tubing represent the nodes and the connections between 
nodes, respectively. As the water passes from one funnel into another, the 
water disappears instantly from the funnel that was previously exposed to 
the water. In non-conserved spread, the amount of content changes as it 
enters and passes through a complex network. The model of non-
conserved spread can best be represented by a continuously running faucet 
running through a series of funnels connected by tubes . Here, the amount 
of water from the original source is infinite. Also, any funnels that have 
been exposed to the water continue to experience the water even as it 
passes into successive funnels. The non-conserved model is the most 
suitable for explaining the transmission of most infectious diseases. 

Software implementations 
o Orange, a free data mining software suite, module 

http://orange.biolab.si/doc/modules/orngNetwork.htm  
o http://pajek.imfm.si/doku.php program for (large) network analysis and 

visualization  

References 
1. Wasserman, Stanley and Katherine Faust. 1994. Social Network Analysis: 

Methods and Applications. Cambridge: Cambridge University Press.  
2. Newman, M., Barabási, A.-L., Watts, D.J. [eds.] (2006) The Structure 

and Dynamics of Networks. Princeton, N.J.: Princeton University Press.  
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4. Graph theory 
In mathematics and computer 
science, graph theory is the study of 
graphs: mathematical structures used 
to model pair wise relations between 
objects from a certain collection. A 
"graph" in this context refers to a 
collection of vertices or 'nodes' and a 
collection of edges that connect pairs 
of vertices. A graph may be 

undirected, meaning that there is no distinction between the two vertices 
associated with each edge, or its edges may be directed from one vertex to 
another; see graph (mathematics) for more detailed definitions and for 
other variations in the types of graphs that are commonly considered. The 
graphs studied in graph theory should not be confused with "graphs of 
functions" and other kinds of graphs. 

History 
The Konigsberg Bridge problem 

The paper written by Leonhard 
Euler on the Seven Bridges of 
Konigsberg and published in 
1736 is regarded as the first 
paper in the history of graph 
theory. This paper, as well as 
the one written by 
Vandermonde on the knight 
problem, carried on with the 
analysis situs initiated by 
Leibniz. Euler's formula 
relating the number of edges, 

vertices, and faces of a convex polyhedron was studied and generalized by 
Cauchy and L'Huillier, and is at the origin of topology. 
More than one century after Euler's paper on the bridges of Konigsberg and 
while Listing introduced topology, Cayley was led by the study of particular 
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analytical forms arising from differential calculus to study a particular class 
of graphs, the trees. This study had many implications in theoretical 
chemistry. The involved techniques mainly concerned the enumeration of 
graphs having particular properties. Enumerative graph theory then rose 
from the results of Cayley and the fundamental results published by Pólya 
between 1935 and 1937 and the generalization of these by De Bruijn in 1959. 
Cayley linked his results on trees with the contemporary studies of chemical 
composition. The fusion of the ideas coming from mathematics with those 
coming from chemistry is at the origin of a part of the standard terminology 
of graph theory. 

In particular, the term "graph" was introduced by Sylvester in a paper 
published in 1878 in Nature, where he draws an analogy between "quantic 
invariants" and "co-variants" of algebra and molecular diagrams.  
"[...] Every invariant and co-variant thus becomes expressible by a graph 
precisely identical with a Kekuléan diagram or chemicograph. [...] I give a 
rule for the geometrical multiplication of graphs, i.e. for constructing a 
graph to the product of in- or co-variants whose separate graphs are given.  
One of the most famous and productive problems of graph theory is the 
four color problem: "Is it true that any map drawn in the plane may have its 
regions colored with four colors, in such a way that any two regions having 
a common border have different colors?" This problem was first posed by 
Francis Guthrie in 1852 and its first written record is in a letter of De Morgan 
addressed to Hamilton the same year. Many incorrect proofs have been 
proposed, including those by Cayley, Kempe, and others. The study and the 
generalization of this problem by Tait, Heawood, Ramsey and Hadwiger led 
to the study of the colorings of the graphs embedded on surfaces with 
arbitrary genus. Tait's reformulation generated a new class of problems, the 
factorization problems, particularly studied by Petersen and Kőnig. The 
works of Ramsey on colorations and more specially the results obtained by 
Turán in 1941 was at the origin of another branch of graph theory, extremal 
graph theory. 
The four color problem remained unsolved for more than a century. A proof 
produced in 1976 by Kenneth Appel and Wolfgang Haken, which involved 
checking the properties of 1,936 configurations by computer, was not fully 
accepted at the time due to its complexity. A simpler proof considering only 
633 configurations was given twenty years later by Robertson, Seymour, 
Sanders and Thomas. 
 The autonomous development of topology from 1860 and 1930 fertilized 
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graph theory back through the works of Jordan, Kuratowski and Whitney. 
Another important factor of common development of graph theory and 
topology came from the use of the techniques of modern algebra. The first 
example of such a use comes from the work of the physicist Gustav 
Kirchhoff, who published in 1845 his Kirchhoff's circuit laws for calculating 
the voltage and current in electric circuits. 
The introduction of probabilistic methods in graph theory, especially in the 
study of Erdős and Rényi of the asymptotic probability of graph 
connectivity, gave rise to yet another branch, known as random graph 
theory, which has been a fruitful source of graph-theoretic results. 

Vertex (graph theory) 

In graph theory, a vertex (plural vertices) 
or node is the fundamental unit out of 
which graphs are formed: an undirected 
graph consists of a set of vertices and a 
set of edges (unordered pairs of vertices), 
while a directed graph consists of a set of 
vertices and a set of arcs (ordered pairs of 
vertices). From the point of view of graph 

theory, vertices are treated as featureless and indivisible objects, although 
they may have additional structure depending on the application from 
which the graph arises; for instance, a semantic network is a graph in which 
the vertices represent concepts or classes of objects. 
The two vertices forming an edge are said to be its endpoints, and the edge 
is said to be incident to the vertices. A vertex w is said to be adjacent to 
another vertex v if the graph contains an edge (v,w). The neighborhood of a 
vertex v is an induced subgraph of the graph, formed by all vertices 
adjacent to v. 
The degree of a vertex in a graph is the number of edges incident to it. An 
isolated vertex is a vertex with degree zero; that is, a vertex that is not an 
endpoint of any edge. A leaf vertex (also pendant vertex) is a vertex with 
degree one. In a directed graph, one can distinguish the outdegree (number 
of outgoing edges) from the indegree (number of incoming edges); a 
source vertex is a vertex with indegree zero, while a sink vertex is a vertex 
with outdegree zero. 
A cut vertex is a vertex the removal of which would disconnect the 
remaining graph; a vertex separator is a collection of vertices the removal 
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of which would disconnect the remaining graph into small pieces. A k-
vertex-connected graph is a graph in which removing fewer than k vertices 
always leaves the remaining graph connected. An independent set is a set 
of vertices no two of which are adjacent, and a vertex cover is a set of 
vertices that includes the endpoint of each edge in the graph. The vertex 
space of a graph is a vector space having a set of basis vectors 
corresponding with the graph's vertices. 
A graph is vertex-transitive if it has symmetries that map any vertex to any 
other vertex. In the context of graph enumeration and graph isomorphism 
it is important to distinguish between labeled vertices and unlabeled 
vertices. A labeled vertex is a vertex that is associated with extra 
information that enables it to be distinguished from other labeled vertices; 
two graphs can be considered isomorphic only if the correspondence 
between their vertices pairs up vertices with equal labels. An unlabeled 
vertex is one that can be substituted for any other vertex based only on its 
adjacencies in the graph and not based on any additional information. 

Vertices in graphs are analogous to, but not the same as, vertices of 
polyhedra: the skeleton of a polyhedron forms a graph, the vertices of 
which are the vertices of the polyhedron, but polyhedron vertices have 
additional structure (their geometric location) that is not assumed to be 
present in graph theory. The vertex figure of a vertex in a polyhedron is 
analogous to the neighborhood of a vertex in a graph. 
In a directed graph, the forward star of a node u is defined as its outgoing 
edges. In a Graph G with the set of vertices V and the set of edges E, the 
forward star of u can be described as . 

Drawing graphs 

Graphs are represented graphically by drawing a dot for every vertex, and 
drawing an arc between two vertices if they are connected by an edge. If 
the graph is directed, the direction is indicated by drawing an arrow. 
A graph drawing should not be confused with the graph itself (the abstract, 
non-visual structure) as there are several ways to structure the graph 
drawing. All that matters is which vertices are connected to which others by 
how many edges and not the exact layout. In practice it is often difficult to 
decide if two drawings represent the same graph. Depending on the 
problem domain some layouts may be better suited and easier to 
understand than others. 
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Graph-theoretic data structures 

There are different ways to store graphs in a computer system. The data 
structure used depends on both the graph structure and the algorithm used 
for manipulating the graph. Theoretically one can distinguish between list 
and matrix structures but in concrete applications the best structure is 
often a combination of both. List structures are often preferred for sparse 
graphs as they have smaller memory requirements. Matrix structures on the 
other hand provide faster access for some applications but can consume 
huge amounts of memory. 

List structures 
- Incidence list   

The edges are represented by an array containing pairs (tuples if directed) 
of vertices (that the edge connects) and possibly weight and other data. 
Vertices connected by an edge are said to be adjacent.  

- Adjacency list   
Much like the incidence list, each vertex has a list of which vertices it is 
adjacent to. This causes redundancy in an undirected graph: for example, if 
vertices A and B are adjacent, A's adjacency list contains B, while B's list 
contains A. Adjacency queries are faster, at the cost of extra storage space.  

Matrix structures 
- Incidence matrix   

The graph is represented by a matrix of size |V| (number of vertices) by |E| 
(number of edges) where the entry [vertex, edge] contains the edge's 
endpoint data (simplest case: 1 - connected, 0 - not connected).  
- Adjacency matrix   

This is the n by n matrix A, where n is the number of vertices in the graph. If 
there is an edge from some vertex x to some vertex y, then the element ax,y 
is 1 (or in general the number of xy edges), otherwise it is 0. In computing, 
this matrix makes it easy to find subgraphs, and to reverse a directed graph.  

- Laplacian matrix or Kirchhoff matrix or Admittance matrix   
This is defined as D − A, where D is the diagonal degree matrix. It explicitly 
contains both adjacency information and degree information.  
- Distance matrix   

A symmetric n by n matrix D whose element dx,y is the length of a shortest 
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path between x and y;  
if there is no such path dx,y = infinity, 
otherwise it can be derived from powers of A: 

  
 

Problems in graph theory 

Enumeration 

There is a large literature on graphical enumeration: the problem of 
counting graphs meeting specified conditions. Some of this work is found in 
Harary and Palmer (1973). 

Subgraphs, induced subgraphs, and minors 
A common problem, called the subgraph isomorphism problem, is finding a 
fixed graph as a subgraph in a given graph. One reason to be interested in 
such a question is that many graph properties are hereditary for subgraphs, 
which means that a graph has the property if and only if all subgraphs have 
it too. Unfortunately, finding maximal subgraphs of a certain kind is often 
an NP-complete problem. 
o Finding the largest complete graph is called the clique problem (NP-

complete).  
o A similar problem is finding induced subgraphs in a given graph. Again, 

some important graph properties are hereditary with respect to 
induced subgraphs, which means that a graph has a property if and only 
if all induced subgraphs also has it. Finding maximal induced subgraphs 
of a certain kind is also often NP-complete. For example, 

o Finding the largest edgeless induced subgraph, or independent set, 
called the independent set problem (NP-complete).  

o Still another such problem, the minor containment problem, is to find a 
fixed graph as a minor of a given graph. A minor or subcontraction of a 
graph is any graph obtained by taking a subgraph and contracting some 
(or no) edges. Many graph properties are hereditary for minors, which 
mean that a graph has a property if and only if all minors have it too.  

o A graph is planar if it contains as a minor neither the complete bipartite 
graph K3,3 (See the Three-cottage problem) nor the complete graph K5.  

o Another class of problems has to do with the extent to which various 



P. G. GYARMATI: SOME WORDS ABOUT NETWORKS 
------------------------------------------------------------------------------------------------------------------------------- 

 20 

species and generalizations of graphs are determined by their point-
deleted subgraphs, for example: 

o The reconstruction conjecture  

Graph coloring 
o The four-color theorem  
o The strong perfect graph theorem  
o The Erdős–Faber–Lovász conjecture (unsolved)  
o The total coloring conjecture (unsolved)  
o The list coloring conjecture (unsolved)  
o The Hadwiger conjecture (graph theory) (unsolved)  

Route problems 
o Hamiltonian path and cycle problems  
o Minimum spanning tree  
o Route inspection problem (also called the "Chinese Postman Problem")  
o Seven Bridges of Königsberg  
o Shortest path problem  
o Steiner tree  
o Three-cottage problem  
o Traveling salesman problem (NP-complete)  

Network flow 

There are numerous problems arising especially from applications that have 
to do with various notions of flows in networks, for example: Max flow min 
cut theorem  

Visibility graph problems 
o Museum guard problem  

Covering problems 
Covering problems are specific instances of subgraph-finding problems, and 
they tend to be closely related to the clique problem or the independent set 
problem. 

o Set cover problem  o Vertex cover problem  

Graph classes 
Many problems involve characterizing the members of various classes of 



P. G. GYARMATI: SOME WORDS ABOUT NETWORKS 
------------------------------------------------------------------------------------------------------------------------------- 

 21 

graphs. Overlapping significantly with other types in this list, this type of 
problem includes, for instance: 
o Enumerating the members of a class  
o Characterizing a class in terms of forbidden substructures  
o Ascertaining relationships among classes (e.g., does one property of 

graphs imply another)  
o Finding efficient algorithms to decide membership in a class  
o Finding representations for members of a class  

Applications 

Applications of graph theory are primarily, but not exclusively, concerned 
with labeled graphs and various specializations of these. 

Structures that can be represented as graphs are ubiquitous, and many 
problems of practical interest can be represented by graphs. The link 
structure of a website could be represented by a directed graph: the 
vertices are the web pages available at the website and a directed edge 
from page A to page B exists if and only if A contains a link to B. A similar 
approach can be taken to problems in travel, biology, computer chip design, 
and many other fields. The development of algorithms to handle graphs is 
therefore of major interest in computer science. There, the transformation 
of graphs is often formalized and represented by graph rewrite systems. 
They are either directly used or properties of the rewrite systems(e.g. 
confluence) are studied. 

A graph structure can be extended by assigning a weight to each edge of 
the graph. Graphs with weights, or weighted graphs, are used to represent 
structures in which pair wise connections have some numerical values. For 
example if a graph represents a road network, the weights could represent 
the length of each road. A digraph with weighted edges in the context of 
graph theory is called a network. 
Networks have many uses in the practical side of graph theory, network 
analysis (for example, to model and analyze traffic networks). Within 
network analysis, the definition of the term "network" varies, and may 
often refer to a simple graph. 
Many applications of graph theory exist in the form of network analysis. 
These split broadly into three categories: 

1. First, analysis to determine structural properties of a network, such as 
the distribution of vertex degrees and the diameter of the graph. A vast 
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number of graph measures exist, and the production of useful ones for 
various domains remains an active area of research.  

2. Second, analysis to find a measurable quantity within the network, for 
example, for a transportation network, the level of vehicular flow 
within any portion of it.  

3. Third, analysis of dynamical properties of networks.  
Graph theory is also used to study molecules in chemistry and physics. In 
condensed matter physics, the three dimensional structure of complicated 
simulated atomic structures can be studied quantitatively by gathering 
statistics on graph-theoretic properties related to the topology of the 
atoms. For example, Franzblau's shortest-path (SP) rings. In chemistry a 
graph makes a natural model for a molecule, where vertices represent 
atoms and edges bonds. This approach is especially used in computer 
processing of molecular structures, ranging from chemical editors to 
database searching. 

Graph theory is also widely used in sociology as a way, for example, to 
measure actors' prestige or to explore diffusion mechanisms, notably 
through the use of social network analysis software. 

Likewise, graph theory is useful in biology and conservation efforts where a 
vertex can represent regions where certain species exist (or habitats) and 
the edges represent migration paths, or movement between the regions. 
This information is important when looking at breeding patterns or tracking 
the spread of disease, parasites or how changes to the movement can 
affect other species. 

Related topics 
o Graph property  
o Algebraic graph theory  
o Conceptual graph  
o Data structure  
o Disjoint-set data structure  
o Entitative graph  
o Existential graph  
o Graph data structure  
o Graph algebras  
o Graph automorphism  
o Graph coloring  
o Graph database  

o Graph drawing  
o Graph equation  
o Graph rewriting  
o Intersection graph  
o Logical graph  
o Loop  
o Null graph  
o Perfect graph  
o Quantum graph  
o Spectral graph theory  
o Strongly regular graphs  
o Symmetric graphs  
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o Tree data structure  

Algorithms 
o Bellman-Ford algorithm  
o Dijkstra's algorithm  
o Ford-Fulkerson algorithm  
o Kruskal's algorithm  

o Nearest neighbor algorithm  
o Prim's algorithm  
o Depth-first search  
o Breadth-first search  

Subareas 
o Algebraic graph theory  
o Geometric graph theory  
o External graph theory  

o Probabilistic graph theory  
o Topological graph theory  

Related areas of mathematics 
o Combinatorics  
o Group theory  

o Knot theory  
o Ramsey theory  

Prominent graph theorists 
o Berge, Claude  
o Bollobás, Béla  
o Chung, Fan  
o Dirac, Gabriel Andrew  
o Erdős, Paul  
o Euler, Leonhard  
o Faudree, Ralph  
o Golumbic, Martin  
o Graham, Ronald  
o Harary, Frank  
o Heawood, Percy John  
o Kőnig, Dénes  

o Lovász, László  
o Nešetřil, Jaroslav  
o Rényi, Alfréd  
o Ringel, Gerhard  
o Robertson, Neil  
o Seymour, Paul  
o Szemerédi, Endre  
o Thomas, Robin  
o Thomassen, Carsten  
o Turán, Pál  
o Tutte, W. T.  
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5. Complex network 
In the context of network theory, a complex network is a network (graph) 
with non-trivial topological features—features that do not occur in simple 
networks such as lattices or random graphs. The study of complex 
networks is a young and active area of scientific research inspired largely by 
the empirical study of real-world networks such as computer networks and 
social networks. 

Definition 
Most social, biological, and technological networks display substantial non-
trivial topological features, with patterns of connection between their 
elements that are neither purely regular nor purely random. Such features 
include a heavy tail in the degree distribution, a high clustering coefficient, 
assortativity or disassortativity among vertices, community structure, and 
hierarchical structure. In the case of directed networks these features also 
include reciprocity, triad significance profile and other features. In contrast, 
many of the mathematical models of networks that have been studied in 
the past, such as lattices and random graphs, do not show these features. 
Two well-known and much studied classes of complex networks are scale-
free networks and small-world networks, whose discovery and definition 
are canonical case-studies in the field. Both are characterized by specific 
structural features—power-law degree distributions for the former and 
short path lengths and high clustering for the latter. However, as the study 
of complex networks has continued to grow in importance and popularity, 
many other aspects of network structure have attracted attention as well. 
The field continues to develop at a brisk pace, and has brought together 
researchers from many areas including mathematics, physics, biology, 
computer science, sociology, epidemiology, and others. Ideas from network 
science have been applied to the analysis of metabolic and genetic 
regulatory networks, the design of robust and scalable communication 
networks both wired and wireless, the development of vaccination 
strategies for the control of disease, and a broad range of other practical 
issues. Research on networks has seen regular publication in some of the 
most visible scientific journals and vigorous funding in many countries, has 
been the topic of conferences in a variety of different fields, and has been 
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the subject of numerous books both for the lay person and for the expert. 

Scale-free networks 
A network is named scale-free if its degree distribution, i.e., the probability 
that a node selected uniformly at random has a certain number of links 
(degree), follows a particular mathematical function called a power law. 
The power law implies that the degree distribution of these networks has 
no characteristic scale. In contrast, network with a single well-defined scale 
are somewhat similar to a lattice in that every node has (roughly) the same 
degree.  
Examples of networks with a single scale include the Erdős–Rényi random 
graph and hypercubes. In a network with a scale-free degree distribution, 
some vertices have a degree that is orders of magnitude larger than the 
average - these vertices are often called "hubs", although this is a bit 
misleading as there is no inherent threshold above which a node can be 
viewed as a hub. If there were, then it wouldn't be a scale-free distribution! 
Interest in scale-free networks began in the late 1990s with the apparent 
discovery of a power-law degree distribution in many real world networks 
such as the World Wide Web, the network of Autonomous systems (ASs), 
some network of Internet routers, protein interaction networks, email 
networks, etc. Although many of these distributions are not unambiguously 
power laws, their breadth, both in degree and in domain, shows that 
networks exhibiting such a distribution are clearly very different from what 
you would expect if edges existed independently and at random (a Poisson 
distribution). Indeed, there are many different ways to build a network with 
a power-law degree distribution.  
The Yule process is a canonical generative process for power laws, and has 
been known since 1925. However, it is known by many other names due to 
its frequent reinvention, e.g., The Gibrat principle by Herbert Simon, the 
Matthew effect, cumulative advantage and, most recently, preferential 
attachment by Barabási and Albert for power-law degree distributions. 
Networks with a power-law degree distribution can be highly resistant to 
the random deletion of vertices, i.e., the vast majority of vertices remain 
connected together in a giant component. Such networks can also be quite 
sensitive to targeted attacks aimed at fracturing the network quickly. When 
the graph is uniformly random except for the degree distribution, these 
critical vertices are the ones with the highest degree, and have thus been 
implicated in the spread of disease (natural and artificial) in social and 
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communication networks, and in the spread of fads (both of which are 
modeled by a percolation or branching process). 

Small-world networks 
A network is called a small-world network by analogy with the small-world 
phenomenon (popularly known as six degrees of separation). The small 
world hypothesis, which was first described by the Hungarian writer Frigyes 
Karinthy in 1929, and tested experimentally by Stanley Milgram (1967), is the 
idea that two arbitrary people are connected by only six degrees of 
separation, i.e. the diameter of the corresponding graph of social 
connections is not much larger than six. In 1998, Duncan J. Watts and 
Steven Strogatz published the first small-world network model, which 
through a single parameter smoothly interpolates between a random graph 
to a lattice. Their model demonstrated that with the addition of only a small 
number of long-range links, a regular graph, in which the diameter is 
proportional to the size of the network, can be transformed into a "small 
world" in which the average number of edges between any two vertices is 
very small (mathematically, it should grow as the logarithm of the size of 
the network), while the clustering coefficient stays large. It is known that a 
wide variety of abstract graphs exhibit the small-world property, e.g., 
random graphs and scale-free networks. Further, real world networks such 
as the World Wide Web and the metabolic network also exhibit this 
property. 

In the scientific literature on networks, there is some ambiguity associated 
with the term "small world." In addition to referring to the size of the 
diameter of the network, it can also refer to the co-occurrence of a small 
diameter and a high clustering coefficient. The clustering coefficient is a 
metric that represents the density of triangles in the network. For instance, 
sparse random graphs have a vanishingly small clustering coefficient while 
real world networks often have a coefficient significantly larger. Scientists 
point to this difference as suggesting that edges are correlated in real world 
networks. 

Researchers and scientists 
o Réka Albert  
o Luis Amaral  
o Alex Arenas  
o Albert-László Barabási  
o Alain Barrat  

o Marc Barthelemy  
o Stefano Boccaletti  
o Dirk Brockmann  
o Guido Caldarelli  
o Roger Guimerà  



P. G. GYARMATI: SOME WORDS ABOUT NETWORKS 
------------------------------------------------------------------------------------------------------------------------------- 

 29 

o Shlomo Havlin  
o Jon Kleinberg  
o José Mendes  
o Yamir Moreno  
o Adilson E. Motter  

o Mark Newman  
o Sidney Redner  
o Steven Strogatz  
o Alessandro Vespignani  
o Duncan J. Watts  

References 
1. Albert-László Barabási, Linked: How Everything is Connected to 

Everything Else, 2004, ISBN 0-452-28439-2  
2. Alain Barrat, Marc Barthelemy, Alessandro Vespignani, Dynamical 

processes in complex networks, Cambridge University Press, 2008, ISBN 
978-0-521-87950-7  

3. Stefan Bornholdt (Editor) and Heinz Georg Schuster (Editor), Handbook 
of Graphs and Networks: From the Genome to the Internet, 2003, ISBN 3-
527-40336-1  

4. Guido Caldarelli, Scale-Free Networks Oxford University Press, 2007, 
ISBN 0-19-921151-7  

5. Matthias Dehmer and Frank Emmert-Streib (Eds.), "Analysis of Complex 
Networks: From Biology to Linguistics", Wiley-VCH, 2009, ISBN 3-527-
32345-7  

6. S.N. Dorogovtsev and J.F.F. Mendes, Evolution of Networks: From 
biological networks to the Internet and WWW, Oxford University Press, 
2003, ISBN 0-19-851590-1  

7. Mark Newman, Albert-László Barabási, and Duncan J. Watts, The 
Structure and Dynamics of Networks, Princeton University Press, 
Princeton, 2006, ISBN 978-0-691-11357-9  

8. R. Pastor-Satorras and A. Vespignani, Evolution and Structure of the 
Internet: A statistical physics approach, Cambridge University Press, 
2004, ISBN 0-521-82698-5  

9. Duncan J. Watts, Six Degrees: The Science of a Connected Age, Norton & 
Company, 2003, ISBN 0-393-04142-5  

10. Duncan J. Watts, Small Worlds: The Dynamics of Networks between 
Order and Randomness, Princeton University Press, 2003, ISBN 0-691-
11704-7  

11. D. J. Watts and S. H. Strogatz., Collective dynamics of 'small-world' 
networks, Nature Vol 393 (1998) 440-442  

12. S. H. Strogatz, Exploring Complex Networks, Nature Vol 410 (2001) 268-
276  

13. R. Albert and A.-L. Barabási, "Statistical mechanics of complex 



P. G. GYARMATI: SOME WORDS ABOUT NETWORKS 
------------------------------------------------------------------------------------------------------------------------------- 

 30 

networks" Reviews of Modern Physics 74, (2002) 47  
14. S. N. Dorogovtsev and J.F.F. Mendes, Evolution of Networks, Adv. Phys. 

51, 1079 (2002)  
15. M. E. J. Newman, The structure and function of complex networks, 

SIAM Review 45, 167-256 (2003)  
16. A. Barabasi and E. Bonabeau, Scale-Free Networks, Scientific American, 

(May 2003), 50-59  
17. S. Boccaletti et al., Complex Networks: Structure and Dynamics, Phys. 

Rep., 424 (2006), 175-308.  
18. S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Critical phenomena 

in complex networks, Rev. Mod. Phys. 80, 1275, (2008)  
19. R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, "Resilience of the Internet 

to random breakdown" Phys. Rev. Lett. 85, 4626 (2000).  

On-line references 
1. Network Science — United States Military Academy - Network Science 

Center http://www.netscience.usma.edu/ 
2. Resources in Complex Networks — University of São Paulo - Institute of 

Physics at São Carlos http://cyvision.if.sc.usp.br/networks/ 
3. Cx-Nets — Complex Networks Collaboratory 

http://sites.google.com/site/cxnets/ 
4. GNET — Group of Complex Systems & Random Networks 

http://www2.fis.ua.pt/grupoteorico/gteorico.htm 
5. UCLA Human Complex Systems Program http://www.hcs.ucla.edu/ 
6. New England Complex Systems Institute  http://necsi.edu/ 
7. Barabasi Networks Group  http://www.barabasilab.com/ 
8. Cosin Project Codes, Papers and Data on Complex Networks 

http://www.cosinproject.org/ 
9. Complex network on arxiv.org 

http://xstructure.inr.ac.ru/x-bin/theme3.py?level=2&index1=127691 
10. Anna Nagurney's Virtual Center for Supernetworks  
11. BIOREL resource for quantitative estimation of the network bias in 

relation to external information 
http://mips.helmholtz-muenchen.de/proj/biorel/ 

12. Complexity Virtual Laboratory (VLAB) 
http://vlab.infotech.monash.edu.au/ 

13. French computer science research group on networks 
http://www.complexnetworks.fr/ 



P. G. GYARMATI: SOME WORDS ABOUT NETWORKS 
------------------------------------------------------------------------------------------------------------------------------- 

 31 

 

 

6. Flow network 
In graph theory, a flow network is a directed graph where each edge has a 
capacity and each edge receives a flow. The amount of flow on an edge 
cannot exceed the capacity of the edge. Often in Operations Research, a 
directed graph is called a network, the vertices are called nodes and the 
edges are called arcs. A flow must satisfy the restriction that the amount of 
flow into a node equals the amount of flow out of it, except when it is a 
source, which has more outgoing flow, or sink, which has more incoming 
flow. A network can be used to model traffic in a road system, fluids in 
pipes, currents in an electrical circuit, or anything similar in which something 
travels through a network of nodes. 

Definition 

Suppose   is a finite directed graph in which every edge  
has a non-negative, real-valued capacity . If , we assume 
that .  We distinguish two vertices: a source  and a sink . A 
flow network is a real function   with the following three 
properties for all nodes and : 

Capacity 
constraints: 

.           The flow along an edge can not 
exceed its capacity. 

Skew 
symmetry: 

.     Flow from  to  must be the 
opposite of the from  to . 

Flow 
conservation: 

 
unless  or . The net flow to a node is zero, 
except for the source, which "produces" flow, and the 
sink, which "consumes" flow. 

Notice that  is the net flow from to . If the graph represents a 
physical network, and if there is a real capacity of, for example, 4 units from 

to , and a real flow of 3 units from to , we have and 
. 
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The residual capacity of an edge is . This defines 
a residual network denoted , giving the amount of available 
capacity. See that there can be an edge from to in the residual network, 
even though there is no edge from to in the original network. Since 
flows in opposite directions cancel out, decreasing the flow from to is 
the same as increasing the flow from to . An augmenting path is a path 

 in the residual network, where , , and 
.  A network is at maximum flow if and only if there is no 

augmenting path in the residual network. 

Example 
A flow network showing flow and capacity.  

Here you see a flow 
network with source 
labeled s, sink t, and four 
additional nodes. The flow 
and capacity is denoted f / 
c. Notice how the network 
upholds skew symmetry, 
capacity constraints and 
flow conservation. The 

total amount of flow from s to t is 5, which can be easily seen from the fact 
that the total outgoing flow from s is 5, which is also the incoming flow to t. 
We know that no flow appears or disappears in any of the other nodes. 
Residual network for the above flow network, showing residual capacities. 

Here is the residual 
network for the given 
flow. Notice how there is 
positive residual capacity 
on some edges where the 
original capacity is zero, 
for example for the edge 
(d,c). This flow is not a 
maximum flow. There is 
available capacity along the paths (s,a,c,t), (s,a,b,d,t) and (s,a,b,d,c,t), which 
are then the augmenting paths. The residual capacity of the first path is 
min(c(s,a) − f(s,a),c(a,c) − f(a,c),c(c,t) − f(c,t)) = min(5 − 3,3 − 2,2 − 1) = 
min(2,1,1) = 1. Notice that augmenting path (s,a,b,d,c,t) does not exist in the 
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original network, but you can send flow along it, and still get a legal flow. 
If this is a real network, there might actually be a flow of 2 from a to b, and a 
flow of 1 from b to a, but we only maintain the net flow. 

Applications 

Picture a series of water pipes, fitting into a network. Each pipe is of a 
certain diameter, so it can only maintain a flow of a certain amount of 
water. Anywhere that pipes meet, the total amount of water coming into 
that junction must be equal to the amount going out, otherwise we would 
quickly run out of water, or we would have a build up of water. We have a 
water inlet, which is the source, and an outlet, the sink. A flow would then 
be one possible way for water to get from source to sink so that the total 
amount of water coming out of the outlet is consistent. Intuitively, the total 
flow of a network is the rate at which water comes out of the outlet. 
Flows can pertain to people or material over transportation networks, or to 
electricity over electrical distribution systems. For any such physical 
network, the flow coming into any intermediate node needs to equal the 
flow going out of that node. Bollobás characterizes this constraint in terms 
of Kirchhoff's current law, while later authors (ie: Chartrand) mention its 
generalization to some conservation equation. 
Flow networks also find applications in ecology: flow networks arise 
naturally when considering the flow of nutrients and energy between 
different organizations in a food web. The mathematical problems 
associated with such networks are quite different from those that arise in 
networks of fluid or traffic flow. The field of ecosystem network analysis, 
developed by Robert Ulanowicz and others, involves using concepts from 
information theory and thermodynamics to study the evolution of these 
networks over time.. 

Generalizations and specializations 
The simplest and most common problem using flow networks is to find 
what is called the maximum flow, which provides the largest possible total 
flow from the source to the sink in a given graph. There are many other 
problems which can be solved using max flow algorithms, if they are 
appropriately modeled as flow networks, such as bipartite matching, the 
assignment problem and the transportation problem. 
In a multi-commodity flow problem, you have multiple sources and sinks, 
and various "commodities" which are to flow from a given source to a given 
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sink. This could be for example various goods that are produced at various 
factories, and are to be delivered to various given customers through the 
same transportation network. 

In a minimum cost flow problem, each edge u,v has a given cost k(u,v), and 
the cost of sending the flow f(u,v) across the edge is . The 
objective is to send a given amount of flow from the source to the sink, at 
the lowest possible price. 

In a circulation problem, you have a lower bound l(u,v) on the edges, in 
addition to the upper bound c(u,v). Each edge also has a cost. Often, flow 
conservation holds for all nodes in a circulation problem, and there is a 
connection from the sink back to the source. In this way, you can dictate 
the total flow with l(t,s) and c(t,s). The flow circulates through the network, 
hence the name of the problem. 
In a network with gains or generalized network each edge has a gain, a real 
number (not zero) such that, if the edge has gain g, and an amount x flows 
into the edge at its tail, then an amount gx flows out at the head. 
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7. Network diagram 
A network diagram is a general type of diagram, which represents some 
kind of network. A network in general is an interconnected group or 
system, or a fabric or structure of fibrous elements attached to each other 
at regular intervals, or formally: a graph. 

A network diagram is a special kind of cluster diagram, which even more 
general represents any cluster or small group or bunch of something, 
structured or not. Both the flow diagram and the tree diagram can be seen 
as a specific type of network diagram. 

There are different types network diagrams: 
o Artificial neural network or "neural network" (NN), is a mathematical 

model or computational model based on biological neural networks. It 
consists of an interconnected group of artificial neurons and processes 
information using a connectionist approach to computation.  

o Computer network diagram is a schematic depicting the nodes and 
connections amongst nodes in a computer network or, more generally, 
any telecommunications network.  

o In project management according to Baker et al. (2003), a "network 
diagram is the logical representation of activities, that defines the 
sequence or the work of a project. It shows the path of a project, lists 
starting and completion dates, and names the responsibilities for each 
task. At a glance it explains how the work of the project goes 
together... A network for a simple project might consist of one or two 
pages, and on a larger project several network diagrams may exist.  

o Project network: a general flow chart depicting the sequence in which a 
project's terminal elements are to be completed by showing terminal 
elements and their dependencies.  

o PERT network  (Program Evaluation and Review Technique). 
o Neural network diagram: is a network or circuit of biological neurons or 

artificial neural networks, which are composed of artificial neurons or 
nodes.  

o A semantic network is a network or circuit of biological neurons. The 
modern usage of the term often refers to artificial neural networks, 



P. G. GYARMATI: SOME WORDS ABOUT NETWORKS 
------------------------------------------------------------------------------------------------------------------------------- 

 36 

which are composed of artificial neurons or nodes.  
o A sociogram is a graphic representation of social links that a person 

has. It is a sociometric chart that plots the structure of interpersonal 
relations in a group situation.  

This Gallery shows example drawings of network diagrams: 

Gallery 

 

Artificial neural network

 

Computer network 
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Network topologies 

In computer science the elements of a network are arranged in certain basic 
shapes (see figure here below): 
 

 
 Diagram of different network topologies. 

 
o Ring: The ring network connects each node to exactly two other nodes, 

forming a circular pathway for activity or signals - a ring. The interaction 
or data travels from node to node, with each node handling every 
packet.  

o Mesh is a way to route data, voice and instructions between nodes. It 
allows for continuous connections and reconfiguration around broken 
or blocked paths by “hopping” from node to node until the destination 
is reached.  

o Star: The star network consists of one central element, switch, hub or 
computer, which acts as a conduit to coordinate activity or transmit 
messages.  

o Fully connected: Every node is connected to every other node.  

o Line:  Everything connected in a single line.  
o Tree: This consists of tree-configured nodes connected to 

switches/concentrators, each connected to a linear bus backbone. Each 
hub rebroadcasts all transmissions received from any peripheral node 
to all peripheral nodes on the network, sometimes including the 
originating node. All peripheral nodes may thus communicate with all 
others by transmitting to, and receiving from, the central node only.  
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o Bus: In this network architecture a set of clients are connected via a 
shared communications line, called a bus.  

Network theory 
Network theory is an area of applied mathematics and part of graph theory. 
It has application in many disciplines including particle physics, computer 
science, biology, economics, operations research, and sociology. Network 
theory concerns itself with the study of graphs as a representation of either 
symmetric relations or, more generally, of asymmetric relations between 
discrete objects. Examples of which include logistical networks, the World 
Wide Web, gene regulatory networks, metabolic networks, social networks, 
epistemological networks, etc. See list of network theory topics for more 
examples. 

Network topology 
Network topology is the study of the arrangement or mapping of the 
elements (links, nodes, etc.) of a network, especially the physical (real) and 
logical (virtual) interconnections between nodes.[4] 
Any particular network topology is determined only by the graphical 
mapping of the configuration of physical and/or logical connections 
between nodes. LAN Network Topology is, therefore, technically a part of 
graph theory. Distances between nodes, physical interconnections, 
transmission rates, and/or signal types may differ in two networks and yet 
their topologies may be identical. 
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8. Network model (database) 
The network model is a database model conceived as a flexible way of 
representing objects and their relationships. Its distinguishing feature is 
that the schema, viewed as a graph in which object types are nodes and 
relationship types are arcs, is not restricted to being a hierarchy or lattice. 
The network model is a database model conceived as a flexible way of 
representing objects and their relationships. Its original inventor was 
Charles Bachman, and it was developed into a standard specification 

published in 1969 by 
the CODASYL 
Consortium. Where 
the hierarchical model 
structures data as a 
tree of records, with 
each record having 
one parent record 
and many children, 
the network model 
allows each record to 
have multiple parent 
and child records, 
forming a lattice 
structure. 

Example of a Network Model. 
The network model's original inventor was Charles Bachman, and it was 
developed into a standard specification published in 1969 by the CODASYL 
Consortium. 

Overview 
Where the hierarchical model structures data as a tree of records, with each 
record having one parent record and many children, the network model 
allows each record to have multiple parent and child records, forming a 
generalized graph structure. This property applies at two levels: the schema 
is a generalized graph of record types connected by relationship types 
(called "set types" in CODASYL), and the database itself is a generalized 
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graph of record occurrences connected by relationships (CODASYL "sets"). 
Cycles are permitted at both levels. 
The chief argument in favor of the network model, in comparison to the 
hierarchic model, was that it allowed a more natural modeling of 
relationships between entities. Although the model was widely 
implemented and used, it failed to become dominant for two main reasons. 
Firstly, IBM chose to stick to the hierarchical model with semi-network 
extensions in their established products such as IMS and DL/I. Secondly, it 
was eventually displaced by the relational model, which offered a higher-
level, more declarative interface. Until the early 1980s the performance 
benefits of the low-level navigational interfaces offered by hierarchical and 
network databases were persuasive for many large-scale applications, but 
as hardware became faster, the extra productivity and flexibility of the 
relational model led to the gradual obsolescence of the network model in 
corporate enterprise usage. 

Some Well-known Network Databases 

o Digital Equipment Corporation DBMS-10  
o Digital Equipment Corporation DBMS-20  
o Digital Equipment Corporation VAX DBMS  
o Honeywell IDS (Integrated Data Store)  
o IDMS (Integrated Database Management System)  
o Raima Data Manager (RDM) Embedded  
o RDM Server  
o TurboIMAGE  
o Univac DMS-1100  

History 

In 1969, the Conference on Data Systems Languages (CODASYL) established 
the first specification of the network database model. This was followed by 
a second publication in 1971, which became the basis for most 
implementations. Subsequent work continued into the early 1980s, 
culminating in an ISO specification, but this had little influence on products. 

References 

o Charles W. Bachman, The Programmer as Navigator. ACM Turing Award 
lecture, Communications of the ACM, Volume 16, Issue 11, 1973, pp. 653-
658, ISSN 0001-0782, doi:10.1145/355611.362534  
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9. Network analysis (electrical circuits) 
A network, in the context of electronics, is a collection of interconnected 
components. Network analysis is the process of finding the voltages across, 
and the currents through, every component in the network. There are a 
number of different techniques for achieving this. However, for the most 
part, they assume that the components of the network are all linear. The 
methods described in this article are only applicable to linear network 
analysis except where explicitly stated. 

Definitions 

Component A device with two or more terminals into which, or out of 
which, charge may flow. 

Node A point at which terminals of more than two components are 
joined. A conductor with a substantially zero resistance is 
considered to be a node for the purpose of analysis. 

Branch The component(s) joining two nodes. 

Mesh A group of branches within a network joined so as to form a 
complete loop. 

Port Two terminals where the current into one is identical to the 
current out of the other. 

Circuit A current from one terminal of a generator, through load 
component(s) and back into the other terminal. A circuit is, 
in this sense, a one-port network and is a trivial case to 
analyze. If there is any connection to any other circuits then 
a non-trivial network has been formed and at least two ports 
must exist. Often, "circuit" and "network" are used 
interchangeably, but many analysts reserve "network" to 
mean an idealized model consisting of ideal components.  

Transfer 
function 

The relationship of the currents and/or voltages between 
two ports. Most often, an input and an output port are 
discussed and the transfer function is described as gain or 
attenuation. 
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Component 
transfer 
function 

For a two-terminal component (i.e. one-port component), 
the current and voltage are taken as the input and output 
and the transfer function will have units of impedance or 
admittance (it is usually a matter of arbitrary convenience 
whether voltage or current is considered the input). A three 
(or more) terminal component effectively has two (or more) 
ports and the transfer function cannot be expressed as a 
single impedance. The usual approach is to express the 
transfer function as a matrix of parameters. These 
parameters can be impedances, but there is a large number 
of other approaches, see two-port network. 

Equivalent circuits 

A useful procedure in network analysis is to simplify the network by 
reducing the number of components. This can be done by replacing the 
actual components with other notional components that have the same 
effect. A particular technique might directly reduce the number of 

components, for instance by combining 
impedances in series. On the other hand it 
might merely change the form in to one in 
which the components can be reduced in a 
later operation. For instance, one might 
transform a voltage generator into a 
current generator using Norton's theorem 
in order to be able to later combine the 
internal resistance of the generator with a 
parallel impedance load. 
A resistive circuit is a circuit containing only 
resistors, ideal current sources, and ideal 
voltage sources. If the sources are constant 
(DC) sources, the result is a DC circuit. The 

analysis of a circuit refers to the process of solving for the voltages and 
currents present in the circuit. The solution principles outlined here also 
apply to phase analysis of AC circuits. 

Two circuits are said to be equivalent with respect to a pair of terminals if 
the voltage across the terminals and current through the terminals for one 
network have the same relationship as the voltage and current at the 
terminals of the other network. 
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If V2 = V1 implies I2 = I1 for all (real) values of V1, then with respect to 
terminals ab and xy, circuit 1 and circuit 2 are equivalent. 
The above is a sufficient definition for a one-port network. For more than 
one port, then it must be defined that the currents and voltages between 
all pairs of corresponding ports must bear the same relationship. For 
instance, star and delta networks are effectively three port networks and 
hence require three simultaneous equations to fully specify their 
equivalence. 

Impedances in series and in parallel 
Any two terminal network of impedances can eventually be reduced to a 
single impedance by successive applications of impedances in series or 
impedances in parallel. 

Impedances in series:       

Impedances in parallel:     

The above simplified for only two impedances in parallel:    

Delta-Star transformation 

A network of impedances 
with more than two 
terminals cannot be 
reduced to a single 
impedance equivalent 
circuit. An n-terminal 
network can, at best, be 
reduced to n impedances. 
For a three terminal 
network, the three 

impedances can be expressed as a three node delta (Δ) network or a four 
node star (Y) network. These two networks are equivalent and the 
transformations between them are given below. A general network with an 
arbitrary number of terminals cannot be reduced to the minimum number 
of impedances using only series and parallel combinations. In general, Y-Δ 
and Δ-Y transformations must also be used. It can be shown that this is 
sufficient to find the minimal network for any arbitrary network with 
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successive applications of series, parallel, Y-Δ and Δ-Y; no more complex 
transformations are required. 
For equivalence, the impedances between any pair of terminals must be the 
same for both networks, resulting in a set of three simultaneous equations. 
The equations below are expressed as resistances but apply equally to the 
general case with impedances. 

Delta-to-star transformation equations 

a
R RR

R R R


 
ac ab

ac ab bc

 

b
R RR

R R R


 
ab bc

ac ab bc

 

c
R RR

R R R


 
bc ac

ac ab bc

 

Star-to-delta transformation equations 

a b b c c a

b

R R R R R RR
R

 
ac  

a b b c c a

c

R R R R R RR
R

 
ab  

a b b c c a

a

R R R R R RR
R

 
bc  

General form of network node elimination 
The star-to-delta and series-resistor transformations are special cases of the 
general resistor network node elimination algorithm. Any node connected 

by N resistors (R1 ... RN) to nodes 1 .. N can be replaced by resistors 
interconnecting the remaining N nodes. The resistance between any two 
nodes x and y is given by: 
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For a star-to-delta (N = 3) this reduces to: 

( )1 1 1( ) a b a b a c b c
a b

a b c a b c

a b b c c a

c

R R R R R R R RR R R
R R R R R R

R R R R R R
R

 
    

 


ab

 

For a series reduction (N = 2) this reduces to: 

( )1 1( ) a b a b
a b a b

a b a b

R R R RR R R R R
R R R R


    ab  

For a dangling resistor (N = 1) it results in the elimination of the resistor 

because
( )1 1( ) a b a b

a b a b
a b a b

R R R RR R R R R
R R R R


    ab . 

Source transformation 

 
A generator with an internal impedance (i.e. non-ideal generator) can be 
represented as either, an ideal voltage generator or an ideal current 
generator plus the impedance. These two forms are equivalent and the 
transformations are given below. If the two networks are equivalent with 
respect to terminals a-b, then V and I must be identical for both networks. 
Thus, 

s sV RI   or   s
s

VI
R

 ;   

o Norton's theorem states that any two-terminal network can be reduced 
to an ideal current generator and a parallel impedance.  

o Thévenin's theorem states that any two-terminal network can be 
reduced to an ideal voltage generator plus a series impedance.  
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Simple networks 

Some very simple networks can be analyzed without the need to apply the 
more systematic approaches. 

Voltage division of series components 

Consider n impedances that are connected in series. The voltage Vi across 
any impedance Zi is 

 
 

Current division of parallel components 
Consider n impedances that are connected in parallel. The current Ii through 
any impedance Zi is  

      for i = 1,2,...,n. 
 

 

Special case: Current division of two parallel components 

;     

Nodal analysis 
1. Label all nodes in the circuit. Arbitrarily select any node as reference. 

2. Define a voltage variable from every remaining node to the reference. 
These voltage variables must be defined as voltage rises with respect to the 
reference node. 
3. Write a KCL equation for every node except the reference. 
4. Solve the resulting system of equations. 

Mesh analysis 
Mesh — a loop that does not contain an inner loop. 

1. Count the number of “window panes” in the circuit. Assign a mesh 
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current to each window pane. 
2. Write a KVL equation for every mesh whose current is unknown. 
3. Solve the resulting equations 

Superposition 
In this method, the effect of each generator in turn is calculated. All the 
generators other than the one being considered are removed; either short-
circuited in the case of voltage generators or open circuited in the case of 
current generators. The total current through or the total voltage across, a 
particular branch is then calculated by summing all the individual currents or 
voltages. 
There is an underlying assumption to this method that the total current or 
voltage is a linear superposition of its parts. The method cannot, therefore, 
be used if non-linear components are present. Note that mesh analysis and 
node analysis also implicitly use superposition so these too, are only 
applicable to linear circuits. 

Choice of method 

Choice of method is to some extent a matter of taste. If the network is 
particularly simple or only a specific current or voltage is required then ad-
hoc application of some simple equivalent circuits may yield the answer 
without recourse to the more systematic methods. 
o Superposition is possibly the most conceptually simple method but 

rapidly leads to a large number of equations and messy impedance 
combinations as the network becomes larger.  

o Nodal analysis: The number of voltage variables, and hence 
simultaneous equations to solve, equals the number of nodes minus 
one. Every voltage source connected to the reference node reduces the 
number of unknowns (and equations) by one. Nodal analysis is thus 
best for voltage sources.  

o Mesh analysis: The number of current variables, and hence 
simultaneous equations to solve, equals the number of meshes. Every 
current source in a mesh reduces the number of unknowns by one. 
Mesh analysis is thus best for current sources. Mesh analysis, however, 
cannot be used with networks which cannot be drawn as a planar 
network, that is, with no crossing components.  
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Transfer function 

A transfer function expresses the relationship between an input and an 
output of a network. For resistive networks, this will always be a simple real 
number or an expression which boils down to a real number.  
Resistive networks are represented by a system of simultaneous algebraic 
equations. However in the general case of linear networks, the network is 
represented by a system of simultaneous linear differential equations. In 
network analysis, rather than use the differential equations directly, it is 
usual practice to carry out a Laplace transform on them first and then 
express the result in terms of the Laplace parameter s, which in general is 
complex. This is described as working in the s-domain. Working with the 
equations directly would be described as working in the time (or t) domain 
because the results would be expressed as time varying quantities.  
The Laplace transform is the mathematical method of transforming 
between the s-domain and the t-domain. 

This approach is standard in control theory and is useful for determining 
stability of a system, for instance, in an amplifier with feedback. 

Two terminal component transfer functions 
For two terminal components the transfer function is the relationship 
between the current input to the device and the resulting voltage across it. 
The transfer function, Z(s), will thus have units of impedance - ohms. For 
the three passive components found in electrical networks, the transfer 
functions are; 

Resistor  

Inductor  

Capacitor 
 

For a network to which only steady ac signals are applied, s is replaced with 
jω and the more familiar values from ac network theory result. 

Resistor  

Inductor  
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Capacitor 
 

Finally, for a network to which only steady dc is applied, s is replaced with 
zero and dc network theory applies. 

Resistor  

Inductor  

Capacitor  

Two port network transfer function 

Transfer functions, in general, in control theory are given the symbol H(s). 
Most commonly in electronics, transfer function is defined as the ratio of 
output voltage to input voltage and given the symbol A(s), or more 
commonly (because analysis is invariably done in terms of sine wave 
response), A(jω), so that; 

 
The A standing for attenuation, or amplification, depending on context. In 
general, this will be a complex function of jω, which can be derived from an 
analysis of the impedances in the network and their individual transfer 
functions. Sometimes the analyst is only interested in the magnitude of the 
gain and not the phase angle. In this case the complex numbers can be 
eliminated from the transfer function and it might then be written as: 

 

Two port parameters 
The concept of a two-port network can be useful in network analysis as a 
black box approach to analysis. The behavior of the two-port network in a 
larger network can be entirely characterized without necessarily stating 
anything about the internal structure. However, to do this it is necessary to 
have more information than just the A(jω) described above. It can be shown 
that four such parameters are required to fully characterize the two-port 
network. These could be the forward transfer function, the input 
impedance, the reverse transfer function (ie, the voltage appearing at the 
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input when a voltage is applied to the output) and the output impedance. 
There are many others (see the main article for a full listing), one of these 
expresses all four parameters as impedances. It is usual to express the four 
parameters as a matrix; 

 

The matrix may be abbreviated to a representative element; 

 or just  
These concepts are capable of being extended to networks of more than 
two ports. However, this is rarely done in reality as in many practical cases 
ports are considered either purely input or purely output. If reverse 
direction transfer functions are ignored, a multi-port network can always be 
decomposed into a number of two-port networks. 

Distributed components 
Where a network is composed of discrete components, analysis using two-
port networks is a matter of choice, not essential. The network can always 
alternatively be analyzed in terms of its individual component transfer 
functions. However, if a network contains distributed components, such as 
in the case of a transmission line, then it is not possible to analyze in terms 
of individual components since they do not exist. The most common 
approach to this is to model the line as a two-port network and characterize 
it using two-port parameters (or something equivalent to them). Another 
example of this technique is modeling the carriers crossing the base region 
in a high frequency transistor. The base region has to be modeled as 
distributed resistance and capacitance rather than lumped components. 

Image analysis 
Transmission lines and certain types of filter design use the image method 
to determine their transfer parameters. In this method, the behavior of an 
infinitely long cascade connected chain of identical networks is considered. 
The input and output impedances and the forward and reverse transmission 
functions are then calculated for this infinitely long chain. Although, the 
theoretical values so obtained can never be exactly realized in practice, in 
many cases they serve as a very good approximation for the behavior of a 
finite chain as long as it is not too short. 
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Non-linear networks 

Most electronic designs are, in reality, non-linear. There is very little that 
does not include some semiconductor devices. These are invariably non-
linear, the transfer function of an ideal semiconductor pn junction is given 
by the very non-linear relationship; 

 
where; 
o i and v are the instantaneous current and voltage.  
o Io is an arbitrary parameter called the reverse leakage current whose 

value depends on the construction of the device.  

o VT is a parameter proportional to temperature called the thermal 
voltage and equal to about 25mV at room temperature.  

There are many other ways that non-linearity can appear in a network. All 
methods utilizing linear superposition will fail when non-linear components 
are present. There are several options for dealing with non-linearity 
depending on the type of circuit and the information the analyst wishes to 
obtain. 

Boolean analysis of switching networks 
A switching device is one where the non-linearity is utilized to produce two 
opposite states. CMOS devices in digital circuits, for instance, have their 
output connected to either the positive or the negative supply rail and are 
never found at anything in between except during a transient period when 
the device is actually switching. Here the non-linearity is designed to be 
extreme, and the analyst can actually take advantage of that fact. These 
kinds of networks can be analyzed using Boolean algebra by assigning the 
two states ("on"/"off", "positive"/"negative" or whatever states are being 
used) to the Boolean constants "0" and "1". 

The transients are ignored in this analysis, along with any slight discrepancy 
between the actual state of the device and the nominal state assigned to a 
Boolean value. For instance, Boolean "1" may be assigned to the state of 
+5V. The output of the device may actually be +4.5V but the analyst still 
considers this to be Boolean "1". Device manufacturers will usually specify a 
range of values in their data sheets that are to be considered undefined (ie 
the result will be unpredictable). 
The transients are not entirely uninteresting to the analyst. The maximum 
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rate of switching is determined by the speed of transition from one state to 
the other. Happily for the analyst, for many devices most of the transition 
occurs in the linear portion of the devices transfer function and linear 
analysis can be applied to obtain at least an approximate answer. 

It is mathematically possible to derive Boolean algebras which have more 
than two states. There is not too much use found for these in electronics, 
although three-state devices are passingly common. 

Separation of bias and signal analyses 
This technique is used where the operation of the circuit is to be essentially 
linear, but the devices used to implement it are non-linear. A transistor 
amplifier is an example of this kind of network. The essence of this 
technique is to separate the analysis in to two parts. Firstly, the dc biases 
are analyzed using some non-linear method. This establishes the quiescent 
operating point of the circuit. Secondly, the small signal characteristics of 
the circuit are analyzed using linear network analysis. Examples of methods 
that can be used for both these stages are given below. 

Graphical method of dc analysis 
In a great many circuit designs, the dc bias is fed to a non-linear component 
via a resistor (or possibly a network of resistors). Since resistors are linear 
components, it is particularly easy to determine the quiescent operating 
point of the non-linear device from a graph of its transfer function. The 
method is as follows: from linear network analysis the output transfer 
function (that is output voltage against output current) is calculated for the 
network of resistor(s) and the generator driving them. This will be a straight 
line and can readily be superimposed on the transfer function plot of the 
non-linear device. The point where the lines cross is the quiescent operating 
point. 
Perhaps the easiest practical method is to calculate the (linear) network 
open circuit voltage and short circuit current and plot these on the transfer 
function of the non-linear device. The straight line joining these two point is 
the transfer function of the network. 
In reality, the designer of the circuit would proceed in the reverse direction 
to that described. Starting from a plot provided in the manufacturers data 
sheet for the non-linear device, the designer would choose the desired 
operating point and then calculate the linear component values required to 
achieve it. 
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It is still possible to use this method if the device being biased has its bias 
fed through another device which is itself non-linear - a diode for instance. 
In this case however, the plot of the network transfer function onto the 
device being biased would no longer be a straight line and is consequently 
more tedious to do. 

Small signal equivalent circuit 
This method can be used where the deviation of the input and output 
signals in a network stay within a substantially linear portion of the non-
linear devices transfer function, or else are so small that the curve of the 
transfer function can be considered linear. Under a set of these specific 
conditions, the non-linear device can be represented by an equivalent linear 
network. It must be remembered that this equivalent circuit is entirely 
notional and only valid for the small signal deviations. It is entirely 
inapplicable to the dc biasing of the device. 

For a simple two-terminal device, the small signal equivalent circuit may be 
no more than two components. A resistance equal to the slope of the v/i 
curve at the operating point (called the dynamic resistance), and tangent to 
the curve. A generator, because this tangent will not, in general, pass 
through the origin. With more terminals, more complicated equivalent 
circuits are required. 
A popular form of specifying the small signal equivalent circuit amongst 
transistor manufacturers is to use the two-port network parameters known 
as [h] parameters. These are a matrix of four parameters as with the [z] 
parameters but in the case of the [h] parameters they are a hybrid mixture 
of impedances, admittances, current gains and voltage gains. In this model 
the three-terminal transistor is considered to be a two-port network, one of 
its terminals being common to both ports. The [h] parameters are quite 
different depending on which terminal is chosen as the common one. The 
most important parameter for transistors is usually the forward current 
gain, h21, in the common emitter configuration. This is designated hfe on 
data sheets. 
The small signal equivalent circuit in terms of two-port parameters leads to 
the concept of dependent generators. That is, the value of a voltage or 
current generator depends linearly on a voltage or current elsewhere in the 
circuit. For instance the [z] parameter model leads to dependent voltage 
generators as shown in this diagram; 
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[z] parameter equivalent circuit showing dependent voltage generators 
There will always be dependent generators in a two-port parameter 
equivalent circuit. This applies to the [h] parameters as well as to the [z] 
and any other kind. These dependencies must be preserved when 
developing the equations in a larger linear network analysis. 

Piecewise linear method 

In this method, the transfer function of the non-linear device is broken up 
into regions. Each of these regions is approximated by a straight line. Thus, 
the transfer function will be linear up to a particular point where there will 
be a discontinuity. Past this point the transfer function will again be linear 
but with a different slope. 
A well known application of this method is the approximation of the 
transfer function of a pn junction diode. The actual transfer function of an 
ideal diode has been given at the top of this (non-linear) section. However, 
this formula is rarely used in network analysis, a piecewise approximation 
being used instead. It can be seen that the diode current rapidly diminishes 
to -Io as the voltage falls. This current, for most purposes, is so small it can 
be ignored. With increasing voltage, the current increases exponentially. 
The diode is modeled as an open circuit up to the knee of the exponential 
curve, then past this point as a resistor equal to the bulk resistance of the 
semiconducting material. 
The commonly accepted values for the transition point voltage are 0.7V for 
silicon devices and 0.3V for germanium devices. An even simpler model of 
the diode, sometimes used in switching applications, is short circuit for 
forward voltages and open circuit for reverse voltages. 
The model of a forward biased pn junction having an approximately 
constant 0.7V is also a much used approximation for transistor base-emitter 
junction voltage in amplifier design. 
The piecewise method is similar to the small signal method in that linear 
network analysis techniques can only be applied if the signal stays within 
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certain bounds. If the signal crosses a discontinuity point then the model is 
no longer valid for linear analysis purposes. The model does have the 
advantage over small signal however, in that it is equally applicable to signal 
and dc bias. These can therefore both be analyzed in the same operations 
and will be linearly super imposable. 

Time-varying components 
In linear analysis, the components of the network are assumed to be 
unchanging, but in some circuits this does not apply, such as sweep 
oscillators, voltage controlled amplifiers, and variable equalizers. In many 
circumstances the change in component value is periodic. A non-linear 
component excited with a periodic signal, for instance, can be represented 
as periodically varying linear component. Sidney Darlington disclosed a 
method of analyzing such periodic time varying circuits. He developed 
canonical circuit forms which are analogous to the canonical forms of 
Ronald Foster and Wilhelm Cauer used for analyzing linear circuits. 
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10. Social network 
A social network is a social structure made of individuals (or organizations) 
called "nodes," which are tied (connected) by one or more specific types of 
interdependency, such as friendship, kinship, financial exchange, dislike, 
sexual relationships, or relationships of beliefs, knowledge or prestige. 

 
An example of a social network diagram. 

 

Social network analysis views social relationships in terms of network 
theory consisting of nodes and ties. Nodes are the individual actors within 
the networks, and ties are the relationships between the actors. The 
resulting graph-based structures are often very complex. There can be 
many kinds of ties between the nodes. Research in a number of academic 
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fields has shown that social networks operate on many levels, from families 
up to the level of nations, and play a critical role in determining the way 
problems are solved, organizations are run, and the degree to which 
individuals succeed in achieving their goals. 

In its simplest form, a social network is a map of all of the relevant ties 
between all the nodes being studied. The network can also be used to 
measure social capital -- the value that an individual gets from the social 
network. These concepts are often displayed in a social network diagram, 
where nodes are the points and ties are the lines. 

Social network analysis  

Social network analysis (related to network theory) has emerged as a key 
technique in modern sociology. It has also gained a significant following in 
anthropology, biology, communication studies, economics, geography, 
information science, organizational studies, social psychology, and 
sociolinguistics, and has become a popular topic of speculation and study. 
People have used the idea of "social network" loosely for over a century to 
connote complex sets of relationships between members of social systems 
at all scales, from interpersonal to international. In 1954, J. A. Barnes started 
using the term systematically to denote patterns of ties, encompassing 
concepts traditionally used by the public and those used by social scientists: 
bounded groups (e.g., tribes, families) and social categories (e.g., gender, 
ethnicity). Scholars such as S.D. Berkowitz, Stephen Borgatti, Ronald Burt, 
Kathleen Carley, Martin Everett, Katherine Faust, Linton Freeman, Mark 
Granovetter, David Knoke, David Krackhardt, Peter Marsden, Nicholas 
Mullins, Anatol Rapoport, Stanley Wasserman, Barry Wellman, Douglas R. 
White, and Harrison White expanded the use of systematic social network 
analysis.  
Social network analysis has now moved from being a suggestive metaphor 
to an analytic approach to a paradigm, with its own theoretical statements, 
methods, social network analysis software, and researchers. Analysts 
reason from whole to part; from structure to relation to individual; from 
behavior to attitude. They typically either study whole networks (also 
known as complete networks), all of the ties containing specified relations in 
a defined population, or personal networks (also known as egocentric 
networks), the ties that specified people have, such as their "personal 
communities". The distinction between whole/complete networks and 
personal/egocentric networks has depended largely on how analysts were 
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able to gather data. That is, for groups such as companies, schools, or 
membership societies, the analyst was expected to have complete 
information about who was in the network, all participants being both 
potential egos and alters. Personal/egocentric studies were typically 
conducted when identities of egos were known, but not their alters. These 
studies rely on the egos to provide information about the identities of alters 
and there is no expectation that the various egos or sets of alters will be 
tied to each other. A snowball network refers to the idea that the alters 
identified in an egocentric survey then become egos themselves and are 
able in turn to nominate additional alters. While there are severe logistic 
limits to conducting snowball network studies, a method for examining 
hybrid networks has recently been developed in which egos in complete 
networks can nominate alters otherwise not listed who are then available 
for all subsequent egos to see. [3] The hybrid network may be valuable for 
examining whole/complete networks that are expected to include 
important players beyond those who are formally identified. For example, 
employees of a company often work with non-company consultants who 
may be part of a network that cannot fully be defined prior to data 
collection. 

Several analytic tendencies distinguish social network analysis:  
There is no assumption that groups are the building blocks of society: the 
approach is open to studying less-bounded social systems, from nonlocal 
communities to links among websites.  
Rather than treating individuals (persons, organizations, states) as discrete 
units of analysis, it focuses on how the structure of ties affects individuals 
and their relationships.  
In contrast to analyses that assume that socialization into norms 
determines behavior, network analysis looks to see the extent to which the 
structure and composition of ties affect norms.  
The shape of a social network helps determine a network's usefulness to its 
individuals. Smaller, tighter networks can be less useful to their members 
than networks with lots of loose connections (weak ties) to individuals 
outside the main network. More open networks, with many weak ties and 
social connections, are more likely to introduce new ideas and opportunities 
to their members than closed networks with many redundant ties. In other 
words, a group of friends who only do things with each other already share 
the same knowledge and opportunities. A group of individuals with 
connections to other social worlds is likely to have access to a wider range 
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of information. It is better for individual success to have connections to a 
variety of networks rather than many connections within a single network. 
Similarly, individuals can exercise influence or act as brokers within their 
social networks by bridging two networks that are not directly linked 
(called filling structural holes).  

The power of social network analysis stems from its difference from 
traditional social scientific studies, which assume that it is the attributes of 
individual actors—whether they are friendly or unfriendly, smart or dumb, 
etc.—that matter. Social network analysis produces an alternate view, 
where the attributes of individuals are less important than their 
relationships and ties with other actors within the network. This approach 
has turned out to be useful for explaining many real-world phenomena, but 
leaves less room for individual agency, the ability for individuals to influence 
their success, because so much of it rests within the structure of their 
network. 

Social networks have also been used to examine how organizations interact 
with each other, characterizing the many informal connections that link 
executives together, as well as associations and connections between 
individual employees at different organizations. For example, power within 
organizations often comes more from the degree to which an individual 
within a network is at the center of many relationships than actual job title. 
Social networks also play a key role in hiring, in business success, and in job 
performance. Networks provide ways for companies to gather information, 
deter competition, and collude in setting prices or policies.  

History of social network analysis 
A summary of the progress of social networks and social network analysis 
has been written by Linton Freeman.  
Precursors of social networks in the late 1800s include Émile Durkheim and 
Ferdinand Tönnies. Tönnies argued that social groups can exist as personal 
and direct social ties that either link individuals who share values and belief 
(gemeinschaft) or impersonal, formal, and instrumental social links 
(gesellschaft). Durkheim gave a non-individualistic explanation of social 
facts arguing that social phenomena arise when interacting individuals 
constitute a reality that can no longer be accounted for in terms of the 
properties of individual actors. He distinguished between a traditional 
society – "mechanical solidarity" – which prevails if individual differences 
are minimized, and the modern society – "organic solidarity" – that 
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develops out of cooperation between differentiated individuals with 
independent roles. 
Georg Simmel, writing at the turn of the twentieth century, was the first 
scholar to think directly in social network terms. His essays pointed to the 
nature of network size on interaction and to the likelihood of interaction in 
ramified, loosely-knit networks rather than groups (Simmel 1908/1971). 
After a hiatus in the first decades of the twentieth century, three main 
traditions in social networks appeared. In the 1930s, J.L. Moreno pioneered 
the systematic recording and analysis of social interaction in small groups, 
especially classrooms and work groups (sociometry), while a Harvard group 
led by W. Lloyd Warner and Elton Mayo explored interpersonal relations at 
work. In 1940, A.R. Radcliffe-Brown's presidential address to British 
anthropologists urged the systematic study of networks. However, it took 
about 15 years before this call was followed-up systematically. 
Social network analysis developed with the kinship studies of Elizabeth Bott 
in England in the 1950s and the 1950s-1960s urbanization studies of the 
University of Manchester group of anthropologists (centered around Max 
Gluckman and later J. Clyde Mitchell) investigating community networks in 
southern Africa, India and the United Kingdom. Concomitantly, British 
anthropologist S.F. Nadel codified a theory of social structure that was 
influential in later network analysis.  

In the 1960s-1970s, a growing number of scholars worked to combine the 
different tracks and traditions. One large group was centered around 
Harrison White and his students at Harvard University: Ivan Chase, Bonnie 
Erickson, Harriet Friedmann, Mark Granovetter, Nancy Howell, Joel Levine, 
Nicholas Mullins, John Padgett, Michael Schwartz and Barry Wellman. Also 
important in this early group were Charles Tilly, who focused on networks in 
political sociology and social movements, and Stanley Milgram, who 
developed the "six degrees of separation" thesis.[10] White's group thought 
of themselves as rebelling against the reigning structural-functionalist 
orthodoxy of then-dominant Harvard sociologist Talcott Parsons, leading 
them to devalue concerns with symbols, values, norms and culture. They 
also were opposed to the methodological individualism espoused by 
another Harvard sociologist, George Homans, which was endemic among 
the dominant survey researchers and positivists of the time. Mark 
Granovetter and Barry Wellman are among the former students of White 
who have elaborated and popularized social network analysis.  
White's was not the only group. Significant independent work was done by 
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scholars elsewhere: University of California Irvine social scientists interested 
in mathematical applications, centered around Linton Freeman, including 
John Boyd, Susan Freeman, Kathryn Faust, A. Kimball Romney and Douglas 
White; quantitative analysts at the University of Chicago, including Joseph 
Galaskiewicz, Wendy Griswold, Edward Laumann, Peter Marsden, Martina 
Morris, and John Padgett; and communication scholars at Michigan State 
University, including Nan Lin and Everett Rogers. A substantively-oriented 
University of Toronto sociology group developed in the 1970s, centered on 
former students of Harrison White: S.D. Berkowitz, Harriet Friedmann, 
Nancy Leslie Howard, Nancy Howell, Lorne Tepperman and Barry Wellman, 
and also including noted modeler and game theorist Anatol Rapoport.  

Research 
Social network analysis has been used in epidemiology to help understand 
how patterns of human contact aid or inhibit the spread of diseases such as 
HIV in a population. The evolution of social networks can sometimes be 
modeled by the use of agent based models, providing insight into the 
interplay between communication rules, rumor spreading and social 
structure. 
SNA may also be an effective tool for mass surveillance -- for example the 
Total Information Awareness program was doing in-depth research on 
strategies to analyze social networks to determine whether or not U.S. 
citizens were political threats. 
Diffusion of innovations theory explores social networks and their role in 
influencing the spread of new ideas and practices. Change agents and 
opinion leaders often play major roles in spurring the adoption of 
innovations, although factors inherent to the innovations also play a role. 
Robin Dunbar has suggested that the typical size of a egocentric network is 
constrained to about 150 members due to possible limits in the capacity of 
the human communication channel. The rule arises from cross-cultural 
studies in sociology and especially anthropology of the maximum size of a 
village (in modern parlance most reasonably understood as an ecovillage). It 
is theorized in evolutionary psychology that the number may be some kind 
of limit of average human ability to recognize members and track emotional 
facts about all members of a group. However, it may be due to economics 
and the need to track "free riders", as it may be easier in larger groups to 
take advantage of the benefits of living in a community without 
contributing to those benefits. 
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Mark Granovetter found in one study that more numerous weak ties can be 
important in seeking information and innovation. Cliques have a tendency 
to have more homogeneous opinions as well as share many common traits. 
This homophilic tendency was the reason for the members of the cliques to 
be attracted together in the first place. However, being similar, each 
member of the clique would also know more or less what the other 
members knew. To find new information or insights, members of the clique 
will have to look beyond the clique to its other friends and acquaintances. 
This is what Granovetter called the "the strength of weak ties". 
Guanxi is a central concept in Chinese society (and other East Asian 
cultures) that can be summarized as the use of personal influence. Guanxi 
can be studied from a social network approach.  
The small world phenomenon is the hypothesis that the chain of social 
acquaintances required to connect one arbitrary person to another 
arbitrary person anywhere in the world is generally short. The concept gave 
rise to the famous phrase six degrees of separation after a 1967 small world 
experiment by psychologist Stanley Milgram. In Milgram's experiment, 
samples of US individuals were asked to reach a particular target person by 
passing a message along a chain of acquaintances. The average length of 
successful chains turned out to be about five intermediaries or six 
separation steps (the majority of chains in that study actually failed to 
complete). The methods (and ethics as well) of Milgram's experiment was 
later questioned by an American scholar, and some further research to 
replicate Milgram's findings had found that the degrees of connection 
needed could be higher. Academic researchers continue to explore this 
phenomenon as Internet-based communication technology has 
supplemented the phone and postal systems available during the times of 
Milgram. A recent electronic small world experiment at Columbia University 
found that about five to seven degrees of separation are sufficient for 
connecting any two people through e-mail.  
Collaboration graphs can be used to illustrate good and bad relationships 
between humans. A positive edge between two nodes denotes a positive 
relationship (friendship, alliance, dating) and a negative edge between two 
nodes denotes a negative relationship (hatred, anger). Signed social 
network graphs can be used to predict the future evolution of the graph. In 
signed social networks, there is the concept of "balanced" and 
"unbalanced" cycles. A balanced cycle is defined as a cycle where the 
products of all the signs are positive. Balanced graphs represent a group of 
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people who are unlikely to change their opinions of the other people in the 
group. Unbalanced graphs represent a group of people who are very likely 
to change their opinions of the people in their group. For example, a group 
of 3 people (A, B, and C) where A and B have a positive relationship, B and C 
have a positive relationship, but C and A have a negative relationship is an 
unbalanced cycle. This group is very likely to morph into a balanced cycle, 
such as one where B only has a good relationship with A, and both A and B 
have a negative relationship with C. By using the concept of balances and 
unbalanced cycles, the evolution of signed social network graphs can be 
predicted. 

One study has found that happiness tends to be correlated in social 
networks. When a person is happy, nearby friends have a 25 percent higher 
chance of being happy themselves. Furthermore, people at the center of a 
social network tend to become happier in the future than those at the 
periphery. Clusters of happy and unhappy people were discerned within the 
studied networks, with a reach of three degrees of separation: a person's 
happiness was associated with the level of happiness of their friends' 
friends' friends.  
Some researchers have suggested that human social networks may have a 
genetic basis. Using a sample of twins from the National Longitudinal Study 
of Adolescent Health, they found that in-degree (the number of times a 
person is named as a friend), transitivity (the probability that two friends 
are friends with one another), and betweenness centrality (the number of 
paths in the network that pass through a given person) are all significantly 
heritable. Existing models of network formation cannot account for this 
intrinsic node variation, so the researchers propose an alternative "Attract 
and Introduce" model that can explain heritability and many other features 
of human social networks.  

Application to Environmental Issues 

The 1984 book The IRG Solution argued that central media and government-
type hierarchical organizations could not adequately understand the 
environmental crisis we were manufacturing, or how to initiate adequate 
solutions. It argued that the widespread introduction of Information 
Routing Groups was required to create a social network whose overall 
intelligence could collectively understand the issues and devise and 
implement correct workable solutions and policies. 
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Measures in social network analysis 

Betweenness  
The extent to which a node lies between other nodes in the network. This 
measure takes into account the connectivity of the node's neighbors, giving 
a higher value for nodes which bridge clusters. The measure reflects the 
number of people who a person is connecting indirectly through their direct 
links.  

Bridge  
An edge is said to be a bridge if deleting it would cause its endpoints to lie in 
different components of a graph.  

Centrality  
This measure gives a rough indication of the social power of a node based 
on how well they "connect" the network. "Betweenness", "Closeness", and 
"Degree" are all measures of centrality.  

Centralization  
The difference between the number of links for each node divided by 
maximum possible sum of differences. A centralized network will have 
many of its links dispersed around one or a few nodes, while a decentralized 
network is one in which there is little variation between the number of links 
each node possesses.  

Closeness  
The degree an individual is near all other individuals in a network (directly or 
indirectly). It reflects the ability to access information through the 
"grapevine" of network members. Thus, closeness is the inverse of the sum 
of the shortest distances between each individual and every other person in 
the network. The shortest path may also be known as the "geodesic 
distance".  

Clustering coefficient  
A measure of the likelihood that two associates of a node are associates 
them. A higher clustering coefficient indicates a greater 'cliquishness'.  

Cohesion  
The degree to which actors are connected directly to each other by 
cohesive bonds. Groups are identified as ‘cliques’ if every individual is 
directly tied to every other individual, ‘social circles’ if there is less 
stringency of direct contact, which is imprecise, or as structurally cohesive 
blocks if precision is wanted.  

Degree  
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The count of the number of ties to other actors in the network. See also 
degree (graph theory).  
(Individual-level) Density  
The degree a respondent's ties know one another/ proportion of ties 
among an individual's nominees. Network or global-level density is the 
proportion of ties in a network relative to the total number possible (sparse 
versus dense networks).  

Flow betweenness centrality  
The degree that a node contributes to sum of maximum flow between all 
pairs of nodes (not that node).  

Eigenvector centrality  
A measure of the importance of a node in a network. It assigns relative 
scores to all nodes in the network based on the principle that connections 
to nodes having a high score contribute more to the score of the node in 
question.  

Local Bridge  
An edge is a local bridge if its endpoints share no common neighbors. 
Unlike a bridge, a local bridge is contained in a cycle.  

Path Length  
The distances between pairs of nodes in the network. Average path-length 
is the average of these distances between all pairs of nodes.  

Prestige  
In a directed graph prestige is the term used to describe a node's centrality. 
"Degree Prestige", "Proximity Prestige", and "Status Prestige" are all 
measures of Prestige.  

Radiality  
Degree an individual’s network reaches out into the network and provides 
novel information and influence.  
Reach  
The degree any member of a network can reach other members of the 
network.  
Structural cohesion  
The minimum number of members who, if removed from a group, would 
disconnect the group.  

Structural equivalence  
Refers to the extent to which nodes have a common set of linkages to 
other nodes in the system. The nodes don’t need to have any ties to each 
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other to be structurally equivalent.  

Structural hole  
Static holes that can be strategically filled by connecting one or more links 
to link together other points. Linked to ideas of social capital: if you link to 
two people who are not linked you can control their communication.  

Network analytic software 
Network analytic tools are used to represent the nodes (agents) and edges 
(relationships) in a network, and to analyze the network data. Like other 
software tools, the data can be saved in external files. Network analysis 
tools allow researchers to investigate large networks like the Internet, 
disease transmission, etc. These tools provide mathematical functions that 
can be applied to the network model. 

Visual representation of social networks is important to understand the 
network data and convey the result of the analysis [2]. Network analysis 
tools are used to change the layout, colors, size and advanced properties of 
the network representation. 

Patents 
There has been rapid growth in the number of US patent applications that 

cover new technologies related 
to social networking. The 
number of published applications 
has been growing at about 250% 
per year over the past five years.  
There are now over 2000 
published applications. Only 
about 100 of these applications 
have issued as patents, however, 
largely due to the multi-year 
backlog in examination of 

business method patents and ethical issues connected with this patent 
category  
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11. Semantic network 
A semantic network is a network which represents semantic relations 
among concepts. This is often used as a form of knowledge representation. 
It is a directed or undirected graph consisting of vertices, which represent 
concepts, and edges.  

 
 

Example of a semantic network 
 

History 
"Semantic Nets" were first invented for computers by Richard H. Richens of 
the Cambridge Language Research Unit in 1956 as an "interlingua" for 
machine translation of natural languages.  

They were developed by Robert F. Simmons at System Development 
Corporation in the early 1960s and later featured prominently in the work of 
Allan M. Collins and colleagues (e.g., Collins and Quillian; Collins and Loftus).  

In the 1960s to 1980s the idea of a semantic link was developed within 
hypertext systems as the most basic unit, or edge, in a semantic network. 
These ideas were extremely influential, and there have been many attempts 
to add typed link semantics to HTML and XML. 
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Semantic network construction 

WordNet 

An example of a semantic network is WordNet, a lexical database of 
English. It groups English words into sets of synonyms called synsets, 
provides short, general definitions, and records the various semantic 
relations between these synonym sets. Some of the most common 
semantic relations defined are metonymy (A is part of B, i.e. B has A as a 
part of itself), homonymy (B is part of A, i.e. A has B as a part of itself), 
hyponymy (or troponymy) (A is subordinate of B; A is kind of B), hypernymy 
(A is superordinate of B), synonymy (A denotes the same as B) and 
antonymy (A denotes the opposite of B). 
WordNet properties have been studied from a network theory perspective 
and compared to other semantic networks created from Roget's Thesaurus 
and word association tasks. From this perspective the three of them are a 
small world structure.[5] 
It is also possible to represent logical descriptions using semantic networks 
such as the existential Graphs of Charles Sanders Peirce or the related 
Conceptual Graphs of John F. Sowa. These have expressive power equal to 
or exceeding standard first-order predicate logic. Unlike WordNet or other 
lexical or browsing networks, semantic networks using these 
representations can be used for reliable automated logical deduction. Some 
automated reasoners exploit the graph-theoretic features of the networks 
during processing. 

Other examples 

Other examples of semantic networks are Gellish models. Gellish English 
with its Gellish English dictionary, is a formal language that is defined as a 
network of relations between concepts and names of concepts. Gellish 
English is a formal subset of natural English, just as Gellish Dutch is a formal 
subset of Dutch, whereas multiple languages share the same concepts. 
Other Gellish networks consist of knowledge models and information 
models that are expressed in the Gellish language. A Gellish network is a 
network of (binary) relations between things. Each relation in the network 
is an expression of a fact that is classified by a relation type. Each relation 
type itself is a concept that is defined in the Gellish language dictionary. 
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Each related thing is either a concept or an individual thing that is classified 
by a concept. The definitions of concepts are created in the form of 
definition models (definition networks) that together form a Gellish 
Dictionary. A Gellish network can be documented in a Gellish database and 
is computer interpretable. 

Software tools 
There are also elaborate types of semantic networks connected with 
corresponding sets of software tools used for lexical knowledge 
engineering, like the Semantic Network Processing System (SNePS) of 
Stuart C. Shapiro or the MultiNet paradigm of Hermann Helbig, especially 
suited for the semantic representation of natural language expressions and 
used in several NLP applications. 
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12. Radio and Television networks 
There are two types of radio networks currently in use around the world: 
the one-to-many broadcast type commonly used for public information and 
entertainment; and the two-way type used more commonly for public 
safety and public services such as police, fire, taxis, and delivery services. 
Following is a description of the former type of radio network although 
many of the same components and much of the same basic technology 
applies to both. 

The Broadcast type of radio network is a network system which distributes 
programming to multiple stations simultaneously or slightly delayed, for the 
purpose of extending total coverage beyond the limits of a single broadcast 
signal. The resulting expanded audience for programming or information 
essentially applies the benefits of mass-production to the broadcasting 
enterprise. A radio network has two sales departments, one to package and 
sell programs to radio stations, and one to sell the audience of those 
programs to advertisers. 
Most radio networks also produce much of their programming. Originally, 
radio networks owned some or all of the radio stations that broadcast the 
network's programming. Presently however, there are many networks that 
do not own any stations and only produce and/or distribute programming. 
Similarly station ownership does not always indicate network affiliation. A 
company might own stations in several different markets and purchase 
programming from a variety of networks. 

Radio networks rose rapidly with the growth of regular broadcasting of 
radio to home listeners in the 1920s. This growth took various paths in 
different places. In Britain the BBC was developed with public funding, in 
the form of a broadcast receiving license, and a broadcasting monopoly in 
its early decades. In contrast, in the United States of America various 
competing commercial networks arose funded by advertising revenue. In 
that instance, the same corporation that owned or operated the network 
often manufactured and marketed the listener’s radio. 
Major technical challenges to be overcome when distributing programs 
over long distances are maintaining signal quality and managing the number 
of switching/relay points in the signal chain. Early on, programs were sent to 



P. G. GYARMATI: SOME WORDS ABOUT NETWORKS 
------------------------------------------------------------------------------------------------------------------------------- 

 77

remote stations (either owned or affiliated) by various methods, including 
leased telephone lines, pre-recorded gramophone records and audio tape. 
The world's first all-radio, non-wire line network was claimed to be the Rural 
Radio Network, a group of six upstate New York FM stations that began 
operation in June 1948. Terrestrial microwave relay, a technology later 
introduced to link stations, has been largely supplanted by coaxial cable, 
fiber, and satellite, which usually offer superior cost-benefit ratios. 
Many early radio networks evolved into Television networks. 

Radio network 
The Two-way type of radio network shares many of the same technologies 
and components as the Broadcast type radio network but is generally set 
up with fixed broadcast points (transmitters) with co-located receivers and 
mobile receivers/transmitters or Transceivers. In this way both the fixed 
and mobile radio units can communicate with each other over broad 
geographic regions ranging in size from small single cities to entire 
states/provinces or countries. There are many ways in which multiple fixed 
transmit/receive sites can be interconnected to achieve the range of 
coverage required by the jurisdiction or authority implementing the system: 
conventional wireless links in numerous frequency bands, fibre-optic links, 
or micro-wave links. In all of these cases the signals are typically backhauled 
to a central switch of some type where the radio message is processed and 
resent (repeated) to all transmitter sites where it is required to be heard. 
In contemporary two-way radio systems a concept called trunking is 
commonly used to achieve better efficiency of radio spectrum use and 
provide very wide ranging coverage with no switching of channels required 
by the mobile radio user as it roams throughout the system coverage. 
Trunking of two-way radio is identical to the concept used for cellular 
phone systems where each fixed and mobile radio is specifically identified 
to the system Controller and its operation is switched by the controller. See 
also the entries Two-way radio and Trunked radio system to see more detail 
on how various types of radios and radio systems work. 

Television network 

A television network is a distribution network for television content 
whereby a central operation provides programming for many television 
stations. Until the mid-1980s, television programming in most countries of 
the world was dominated by a small number of broadcast networks. Many 
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early television networks (e.g. the BBC, NBC or CBS) evolved from earlier 
radio networks. 
In countries where most networks broadcast identical, centrally originated 
content to all their stations and where most individual transmitters 
therefore operate only as large "repeater stations", the terms television 
network, television channel and television station have become 
interchangeable in everyday language, with only professionals in TV-related 
occupations continuing to make a difference between them. Within the 
industry, a tiering is sometimes created among groups of networks based 
on whether their programming is simultaneously originated from a central 
point, and whether the network master control has the technical and 
administrative capability to take over the programming of their affiliates in 
real-time when it deems this necessary—the most common example being 
breaking national news events. 

In North America in particular, many television channels available via cable 
and satellite television are branded as "networks" but are not truly 
networks in the sense defined above, as they are singular operations – they 
have no affiliates or component stations. Such channels are more precisely 
referred to by terms such as "specialty channels" (Canada) or "cable 
networks" (U.S.), although the latter term is somewhat of a misnomer, 
even though these channels are networked across the country by various 
cable and satellite systems. 
A network may or may not produce all of its own programming. If not, 
production houses such as Warner Bros. and Sony Pictures can distribute 
their content to the different networks and it is common that a certain 
production house may have programmes on two or more rival networks. 
Similarly, some networks may import television programmes from other 
countries or use archival programming to help complement their schedules. 

Regulation 
FCC regulations in the United States restricted the number of television 
stations that could be owned by any one network, company or individual. 
This led to a system where most local television stations were 
independently owned, but received programming from the network 
through a franchising contract, except in a few big cities that had network 
owned-and-operated stations and independent stations. In the early days of 
television, when there were often only one or two stations broadcasting in 
an area, the stations were usually affiliated with several networks and were 
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able to choose which programs to air. Eventually, as more stations were 
licensed, it became common for each station to be affiliated with only one 
network and carry all of the "prime time" network programs. Local stations 
however occasionally break from regularly scheduled network 
programming, especially when there is breaking local news (e.g. severe 
weather). Moreover, when stations return to network programming from 
commercial breaks, the station's logo is displayed in the first few seconds 
before switching to the network's logo. 
Another FCC regulation, the Prime Time Access Rule, restricted the number 
of hours of network programming that could be broadcast on the local 
affiliate stations. This was done to encourage the development of locally 
produced programs and to give local residents access to broadcast time. 
More often, the result included a substantial amount of syndicated 
programming, usually consisting of old movies, independently produced 
and syndicated shows, and reruns of network programs. Occasionally, these 
shows were presented by a local host, especially in programs that showed 
cartoons and short comedies intended for children. See List of local 
children's television series (United States). 
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13. Business networking 
Business networking is a marketing method by which business 
opportunities are created through networks of like-minded business 
people. There are several prominent business networking organizations 
that create models of networking activity that, when followed, allow the 
business person to build new business relationship and generate business 
opportunities at the same time. 

Many business people contend business networking is a more cost-effective 
method of generating new business than advertising or public relations 
efforts. This is because business networking is a low-cost activity that 
involves more personal commitment than company money. 

As an example, a business network may agree to meet weekly or monthly 
with the purpose of exchanging business leads and referrals with fellow 
members. To complement this activity, members often meet outside this 
circle, on their own time, and build their own "one-to-one" relationship with 
the fellow member.  

Business networking can be conducted in a local business community, or on 
a larger scale via the Internet. Business networking websites have grown 
over recent years due to the Internet's ability to connect people from all 
over the world. 

Business networking can have a meaning also in the ICT domain, i.e. the 
provision of operating support to companies / organizations, and related 
value chains / value networks. 

It refers to an activity coordination with a wider scope and a simpler 
implementation than pre-organized workflows or web-based 

- impromptu searches for transaction counterparts (workflow is useful to 
coordinate activities, but it is complicated by the use of s.c. "patterns" to 
deviate the flow of work from a pure sequence, in order to compensate its 
intrinsic "linearity";  

- impromptu searches for transaction counterparts on the web are useful as 
well, but only for non strategic supplies; both are complicated by a plethora 
of interfaces -- SOA / XML / web services -- needed among different 
organizations and even between different IT applications within the same 
organization). 
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Online business networking 

Businesses are increasingly using business social networks like Business 
Book or professional business networking tools like Boardex as a means of 
growing their circle of business contacts and promoting themselves online. 
Since businesses are expanding globally, social networks make it easier to 
keep in touch with other contacts around the world. Specific cross-border e-
commerce platforms and business partnering networks now make 
globalization accessible also for small and medium sized companies. 

Face-to-face business networking 
Professionals who wish to leverage their presentation skills with the 
urgency of physically being present attend general and exclusive events. 
Many professionals tend to prefer face-to-face networking over online 
based networking because the potential for higher quality relationships are 
possible. Many individuals also prefer face-to-face because people tend to 
prefer actually knowing and meeting who they intend to do business with. 

General business networking 

Before online networking, there was and has always been, networking face-
to-face. "Schmoozing" or "rubbing elbows" are expressions used among 
business professionals for introducing and meeting one another, and 
establishing rapport. 

Networked Businesses 
With networking developing many businesses now have this as a core part 
of their strategy, those that have developed a strong network of 
connections suppliers and companies can be seen as "Networked 
Businesses" and will tend to source the business and their suppliers through 
the network of relationships that they have in place. Networked businesses 
tend to be Open, Random and Supportive - ORS whereas those relying on 
hierarchical, traditional managed approaches are Closed Selective and 
Controlling - CSC. 

Business networking in the ICT domain 

Companies / organizations - and related value chains / value networks - need 
some sort of IT support. Traditionally, it is provided by software 
applications, software packages /suites, ERPs and/or workflows; presently, 
also by different types of web-based innovations. 
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A truly "ICT" business networking approach rethinks - and rebuilds - the 
operating support from scratch, around two key business features: 
information contributions, to be provided by the activities involved 
(whether they are performed by human beings, automated tools or jointly 
by the two, in a coordinated way); (automated) information exchanges, to 
be provided by the TLC network. 
Information contributions and exchanges, in turn, need to be supported by 
data storage (plain or redundant, with or without automated recovery to 
grant service continuity) and access security (signature, encryption, 
authentication, decryption), which both can be provided either as add-ons 
or as built-in features. 
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14. Dynamic network analysis 
Dynamic network analysis (DNA) is an emergent scientific field that brings 
together traditional social network analysis (SNA), link analysis (LA) and 
multi-agent systems (MAS) within network science and network theory. 
There are two aspects of this field. The first is the statistical analysis of DNA 
data. The second is the utilization of simulation to address issues of 
network dynamics. DNA networks vary from traditional social networks in 
that they are larger, dynamic, multi-mode, multi-plex networks, and may 
contain varying levels of uncertainty. 

DNA statistical tools are generally optimized for large-scale networks and 
admit the analysis of multiple networks simultaneously in which, there are 
multiple types of nodes (multi-node) and multiple types of links (multi-plex). 
In contrast, SNA statistical tools focus on single or at most two mode data 
and facilitate the analysis of only one type of link at a time. 
DNA statistical tools tend to provide more measures to the user, because 
they have measures that use data drawn from multiple networks 
simultaneously. 

 
An example of a multi-entity, multi-network, dynamic network diagram 

From a computer simulation perspective, nodes in DNA are like atoms in 
quantum theory, nodes can be, though need not be, and treated as 
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probabilistic. Whereas nodes in a traditional SNA model are static, nodes in 
a DNA model have the ability to learn. Properties change over time; nodes 
can adapt: A company's employees can learn new skills and increase their 
value to the network; or, capture one terrorist and three more are forced to 
improvise. Change propagates from one node to the next and so on. DNA 
adds the element of a network's evolution and considers the circumstances 
under which change is likely to occur. 

Some problems that people in the DNA area work on 
o Developing metrics and statistics to assess and identify change within 

and across networks.  
o Developing and validating simulations to study network change, 

evolution, adaptation, decay... Computer simulation and organizational 
studies.  

o Developing and validating formal models of network generation.  
o Developing and testing theory of network change, evolution, 

adaptation, decay. 
o Developing techniques to visualize network change overall or at the 

node or group level.  
o Developing statistical techniques to see whether differences observed 

over time in networks are due to simply different samples from a 
distribution of links and nodes or changes over time in the underlying 
distribution of links and nodes.  

o Developing control processes for networks over time.  
o Developing algorithms to change distributions of links in networks over 

time.  
o Developing algorithms to track groups in networks over time.  
o Developing tools to extract or locate networks from various data 

sources such as texts.  
o Developing statistically valid measurements on networks over time.  
o Examining the robustness of network metrics under various types of 

missing data.  
o Empirical studies of multi-mode multi-link multi-time period networks.  
o Examining networks as probabilistic time-variant phenomena.  
o Forecasting change in existing networks.  
o Identifying trails through time given a sequence of networks.  
o Identifying changes in node criticality given a sequence of networks 

anything else related to multi-mode multi-link multi-time period 
networks.  
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15. Neural network 
Traditionally, the term neural network had been used to refer to a network 
or circuit of biological neurons. The modern usage of the term often refers 
to artificial neural networks, which are composed of artificial neurons or 
nodes. Thus the term has two distinct usages: 

1. Biological neural networks 
are made up of real biological 
neurons that are connected or 
functionally related in the 
peripheral nervous system or the 
central nervous system. In the 
field of neuroscience, they are 
often identified as groups of 
neurons that perform a specific 
physiological function in 
laboratory analysis.  

2. Artificial neural networks are 
made up of interconnecting 
artificial neurons (programming 

constructs that mimic the properties of biological neurons). Artificial neural 
networks may either be used to gain an understanding of biological neural 
networks, or for solving artificial intelligence problems without necessarily 
creating a model of a real biological system. The real, biological nervous 
system is highly complex and includes some features that may seem 
superfluous based on an understanding of artificial networks. 

This picture is a simplified view of a feed forward artificial neural network. 
This article focuses on the relationship between the two concepts; for 
detailed coverage of the two different concepts refer to the separate 
articles: Biological neural network and artificial neural network. 

Overview 

In general a biological neural network is composed of a group or groups of 
chemically connected or functionally associated neurons. A single neuron 
may be connected to many other neurons and the total number of neurons 
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and connections in a network may be extensive. Connections, called 
synapses, are usually formed from axons to dendrites, though 
dendrodendritic microcircuits  and other connections are possible. Apart 
from the electrical signaling, there are other forms of signaling that arise 
from neurotransmitter diffusion, which have an effect on electrical 
signaling. As such, neural networks are extremely complex. 
Artificial intelligence and cognitive modeling try to simulate some 
properties of neural networks. While similar in their techniques, the former 
has the aim of solving particular tasks, while the latter aims to build 
mathematical models of biological neural systems. 
In the artificial intelligence field, artificial neural networks have been applied 
successfully to speech recognition, image analysis and adaptive control, in 
order to construct software agents (in computer and video games) or 
autonomous robots. Most of the currently employed artificial neural 
networks for artificial intelligence are based on statistical estimation, 
optimization and control theory. 
The cognitive modeling field involves the physical or mathematical 
modeling of the behavior of neural systems; ranging from the individual 
neural level (e.g. modeling the spike response curves of neurons to a 
stimulus), through the neural cluster level (e.g. modeling the release and 
effects of dopamine in the basal ganglia) to the complete organism (e.g. 
behavioral modeling of the organism's response to stimuli). Artificial 
intelligence, cognitive modeling, and neural networks are information 
processing paradigms inspired by the way biological neural systems process 
data. 

History of the neural network analogy 

The concept of neural networks started in the late-1800s as an effort to 
describe how the human mind performed. These ideas started being 
applied to computational models with Turing's B-type machines and the 
perceptron. 
In early 1950s Friedrich Hayek was one of the first to posit the idea of 
spontaneous order in the brain arising out of decentralized networks of 
simple units (neurons). In the late 1940s, Donald Hebb made one of the first 
hypotheses for a mechanism of neural plasticity (i.e. learning), Hebbian 
learning. Hebbian learning is considered to be a 'typical' unsupervised 
learning rule and it (and variants of it) was an early model for long term 
potentiation. 
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The perceptron is essentially a linear classifier for classifying data 
specified by parameters and an output function f = w'x + b.  
Its parameters are adapted with an ad-hoc rule similar to stochastic 
steepest gradient descent. Because the inner product is a linear operator in 
the input space, the Perceptron can only perfectly classify a set of data for 
which different classes are linearly separable in the input space, while it 
often fails completely for non-separable data. While the development of the 
algorithm initially generated some enthusiasm, partly because of its 
apparent relation to biological mechanisms, the later discovery of this 
inadequacy caused such models to be abandoned until the introduction of 
non-linear models into the field. 
The cognitron (1975) was an early multilayered neural network with a 
training algorithm. The actual structure of the network and the methods 
used to set the interconnection weights change from one neural strategy to 
another, each with its advantages and disadvantages. Networks can 
propagate information in one direction only, or they can bounce back and 
forth until self-activation at a node occurs and the network settles on a final 
state.  

The ability for bi-directional flow of inputs between neurons/nodes was 
produced with the Hopfield's network (1982), and specialization of these 
node layers for specific purposes was introduced through the first hybrid 
network. 

The parallel distributed processing of the mid-1980s became popular under 
the name connectionism. 
The rediscovery of the backpropagation algorithm was probably the main 
reason behind the repopularisation of neural networks after the publication 
of "Learning Internal Representations by Error Propagation" in 1986 
(Though backpropagation itself dates from 1974). 
The original network utilized multiple layers of weight-sum units of the type 
f = g(w'x + b), where g was a sigmoid function or logistic function such as 
used in logistic regression. Training was done by a form of stochastic 
steepest gradient descent. The employment of the chain rule of 
differentiation in deriving the appropriate parameter updates results in an 
algorithm that seems to 'backpropagate errors', hence the nomenclature.  

However it is essentially a form of gradient descent. Determining the 
optimal parameters in a model of this type is not trivial, and steepest 
gradient descent methods cannot be relied upon to give the solution 
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without a good starting point. In recent times, networks with the same 
architecture as the backpropagation network are referred to as Multi-Layer 
Perceptrons. This name does not impose any limitations on the type of 
algorithm used for learning. 

The backpropagation network generated much enthusiasm at the time and 
there was much controversy about whether such learning could be 
implemented in the brain or not, partly because a mechanism for reverse 
signaling was not obvious at the time, but most importantly because there 
was no plausible source for the 'teaching' or 'target' signal. 

The brain, neural networks and computers 

Neural networks, as used in artificial intelligence, have traditionally been 
viewed as simplified models of neural processing in the brain, even though 
the relation between this model and brain biological architecture is 
debated. 
A subject of current research in theoretical neuroscience is the question 
surrounding the degree of complexity and the properties that individual 
neural elements should have to reproduce something resembling animal 
intelligence. 
Historically, computers evolved from the von Neumann architecture, which 
is based on sequential processing and execution of explicit instructions. On 
the other hand, the origins of neural networks are based on efforts to 
model information processing in biological systems, which may rely largely 
on parallel processing as well as implicit instructions based on recognition 
of patterns of 'sensory' input from external sources. In other words, at its 
very heart a neural network is a complex statistical processor (as opposed 
to being tasked to sequentially process and execute). 

Neural networks and artificial intelligence 
A neural network (NN). in the case of artificial neurons called artificial neural 
network (ANN) or simulated neural network (SNN), is an interconnected 
group of natural or artificial neurons that uses a mathematical or 
computational model for information processing based on a connectionist 
approach to computation. In most cases an ANN is an adaptive system that 
changes its structure based on external or internal information that flows 
through the network. 
In more practical terms neural networks are non-linear statistical data 
modeling or decision making tools. They can be used to model complex 
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relationships between inputs and outputs or to find patterns in data. 
However, the paradigm of neural networks - i.e., implicit, and not explicit  
learning is stressed - seems more to correspond to some kind of natural 
intelligence than to the traditional Artificial Intelligence, which would stress, 
instead, rule-based learning. 

Background 
An artificial neural network involves a network of simple processing 
elements (artificial neurons) which can exhibit complex global behavior, 
determined by the connections between the processing elements and 
element parameters. Artificial neurons were first proposed in 1943 by 
Warren McCulloch, a neurophysiologist, and Walter Pitts, an MIT logician. 
One classical type of artificial neural network is the recurrent Hopfield net. 

In a neural network model simple nodes, which can be called variously 
"neurons", "neurodes", "Processing Elements" (PE) or "units", are 
connected together to form a network of nodes — hence the term "neural 
network". While a neural network does not have to be adaptive per se, its 
practical use comes with algorithms designed to alter the strength 
(weights) of the connections in the network to produce a desired signal 
flow. 
In modern software implementations of artificial neural networks the 
approach inspired by biology has more or less been abandoned for a more 
practical approach based on statistics and signal processing. In some of 
these systems, neural networks, or parts of neural networks (such as 
artificial neurons), are used as components in larger systems that combine 
both adaptive and non-adaptive elements. 

The concept of a neural network appears to have first been proposed by 
Alan Turing in his 1948 paper "Intelligent Machinery". 

Applications of natural and of artificial neural networks 
The utility of artificial neural network models lies in the fact that they can be 
used to infer a function from observations and also to use it. This is 
particularly useful in applications where the complexity of the data or task 
makes the design of such a function by hand impractical. 

Real life applications  
The tasks to which artificial neural networks are applied tend to fall within 
the following broad categories: 
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o Function approximation, or regression analysis, including time series 
prediction and modeling.  

o Classification, including pattern and sequence recognition, novelty 
detection and sequential decision making.  

o Data processing, including filtering, clustering, blind signal separation 
and compression.  

Application areas of ANNs include system identification and control (vehicle 
control, process control), game-playing and decision making (backgammon, 
chess, racing), pattern recognition (radar systems, face identification, 
object recognition, etc.), sequence recognition (gesture, speech, 
handwritten text recognition), medical diagnosis, financial applications, 
data mining (or knowledge discovery in databases, "KDD"), visualization 
and e-mail spam filtering. 
o Moreover, some brain diseases, e.g. Alzheimer, are apparently, and 

essentially, diseases of the brain's natural NN by damaging necessary 
prerequisites for the functioning of the mutual interconnections 
between neurons and/or glia.  

Neural network software 
Neural network software is used to simulate, research, develop and apply 
artificial neural networks, biological neural networks and in some cases a 
wider array of adaptive systems. 

Learning paradigms 
There are three major learning paradigms, each corresponding to a 
particular abstract learning task. These are supervised learning, 
unsupervised learning and reinforcement learning. Usually any given type of 
network architecture can be employed in any of those tasks. 

Supervised learning  
In supervised learning, we are given a set of example pairs 

and the aim is to find a function f in the allowed class of 
functions that matches the examples. In other words, we wish to infer how 
the mapping implied by the data and the cost function is related to the 
mismatch between our mapping and the data. 
Unsupervised learning  
In unsupervised learning we are given some data x, and a cost function 
which is to be minimized which can be any function of x and the network's 
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output, f. The cost function is determined by the task formulation. Most 
applications fall within the domain of estimation problems such as 
statistical modeling, compression, filtering, blind source separation and 
clustering. 
Reinforcement learning  
In reinforcement learning, data x is usually not given, but generated by an 
agent's interactions with the environment. At each point in time t, the 
agent performs an action yt and the environment generates an observation 
xt and an instantaneous cost ct, according to some (usually unknown) 
dynamics. The aim is to discover a policy for selecting actions that minimizes 
some measure of a long-term cost, i.e. the expected cumulative cost. The 
environment's dynamics and the long-term cost for each policy are usually 
unknown, but can be estimated. ANNs are frequently used in reinforcement 
learning as part of the overall algorithm. Tasks that fall within the paradigm 
of reinforcement learning are control problems, games and other 
sequential decision making tasks. 

Learning algorithms 
There are many algorithms for training neural networks; most of them can 
be viewed as a straightforward application of optimization theory and 
statistical estimation. They include: Back propagation by gradient descent, 
Rprop, BFGS, CG etc. 

Evolutionary computation methods simulated annealing, expectation 
maximization and non-parametric methods are among other commonly 
used methods for training neural networks. See also machine learning. 
Recent developments in this field also saw the use of particle swarm 
optimization and other swarm intelligence techniques used in the training 
of neural networks. 

Neural networks and neuroscience 
Theoretical and computational neuroscience is the field concerned with the 
theoretical analysis and computational modeling of biological neural 
systems. Since neural systems are intimately related to cognitive processes 
and behavior, the field is closely related to cognitive and behavioral 
modeling. 

The aim of the field is to create models of biological neural systems in order 
to understand how biological systems work. To gain this understanding, 
neuroscientists strive to make a link between observed biological processes 
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(data), biologically plausible mechanisms for neural processing and learning 
(biological neural network models) and theory (statistical learning theory 
and information theory). 

Types of models 
Many models are used in the field, each defined at a different level of 
abstraction and trying to model different aspects of neural systems. They 
range from models of the short-term behavior of individual neurons, 
through models of how the dynamics of neural circuitry arise from 
interactions between individual neurons, to models of how behavior can 
arise from abstract neural modules that represent complete subsystems. 
These include models of the long-term and short-term plasticity of neural 
systems and its relation to learning and memory, from the individual neuron 
to the system level. 

Current research 
While initially research had been concerned mostly with the electrical 
characteristics of neurons, a particularly important part of the investigation 
in recent years has been the exploration of the role of neuromodulators 
such as dopamine, acetylcholine, and serotonin on behavior and learning. 

Biophysical models, such as BCM theory, have been important in 
understanding mechanisms for synaptic plasticity, and have had 
applications in both computer science and neuroscience. Research is 
ongoing in understanding the computational algorithms used in the brain, 
with some recent biological evidence for radial basis networks and neural 
backpropagation as mechanisms for processing data. 

Criticism 

A common criticism of neural networks, particularly in robotics, is that they 
require a large diversity of training for real-world operation. Dean 
Pomerleau, in his research presented in the paper "Knowledge-based 
Training of Artificial Neural Networks for Autonomous Robot Driving," uses 
a neural network to train a robotic vehicle to drive on multiple types of 
roads (single lane, multi-lane, dirt, etc.). A large amount of his research is 
devoted to (1) extrapolating multiple training scenarios from a single 
training experience, and (2) preserving past training diversity so that the 
system does not become over trained (if, for example, it is presented with a 
series of right turns – it should not learn to always turn right). These issues 
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are common in neural networks that must decide from amongst a wide 
variety of responses. 
A. K. Dewdney, a former Scientific American columnist, wrote in 1997, 
"Although neural nets do solve a few toy problems, their powers of 
computation are so limited that I am surprised anyone takes them seriously 
as a general problem-solving tool." (Dewdney, p. 82) 
Arguments for Dewdney's position are that to implement large and 
effective software neural networks, much processing and storage resources 
need to be committed. While the brain has hardware tailored to the task of 
processing signals through a graph of neurons, simulating even a most 
simplified form on Von Neumann technology may compel a NN designer to 
fill many millions of database rows for its connections - which can lead to 
abusive RAM and HD necessities.  
Furthermore, the designer of NN systems will often need to simulate the 
transmission of signals through many of these connections and their 
associated neurons - which must often be matched with incredible amounts 
of CPU processing power and time. While neural networks often yield 
effective programs, they too often do so at the cost of time and money 
efficiency. 
Arguments against Dewdney's position are that neural nets have been 
successfully used to solve many complex and diverse tasks, ranging from 
autonomously flying aircraft to detecting credit card fraud. 
Technology writer Roger Bridgman commented on Dewdney's statements 
about neural nets: 
Neural networks, for instance, are in the dock not only because they have 
been hyped to high heaven, (what hasn't?) but also because you could 
create a successful net without understanding how it worked: the bunch of 
numbers that captures its behavior would in all probability be "an opaque, 
unreadable table...valueless as a scientific resource". In spite of his 
emphatic declaration that science is not technology, Dewdney seems here 
to pillory neural nets as bad science when most of those devising them are 
just trying to be good engineers. An unreadable table that a useful machine 
could read would still be well worth having.  

Some other criticisms came from believers of hybrid models (combining 
neural networks and symbolic approaches). They advocate the intermix of 
these two approaches and believe that hybrid models can better capture 
the mechanisms of the human mind (Sun and Bookman 1994). 
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16. Artificial neural network 
An artificial neural network (ANN), usually called "neural network" (NN), is 
a mathematical model or computational model that tries to simulate the 
structure and/or functional aspects of biological neural networks. It consists 
of an interconnected group of artificial neurons and processes information 
using a connectionist approach to computation. In most cases an ANN is an 
adaptive system that changes its structure based on external or internal 
information that flows through the network during the learning phase. 
Neural networks are non-linear statistical data modeling tools. They can be 
used to model complex relationships between inputs and outputs or to find 
patterns in data. 

 A neural network is an 
interconnected group of nodes, 
akin to the vast network of 
neurons in the human brain. 

Background 
There is no precise agreed-upon 
definition among researchers as 
to what a neural network is, but 
most would agree that it involves 
a network of simple processing 
elements (neurons), which can 
exhibit complex global behavior, 

determined by the connections between the processing elements and 
element parameters. The original inspiration for the technique came from 
examination of the central nervous system and the neurons (and their 
axons, dendrites and synapses) which constitute one of its most significant 
information processing elements (see neuroscience). In a neural network 
model, simple nodes, called variously "neurons", "neurodes", "PEs" 
("processing elements") or "units", are connected together to form a 
network of nodes — hence the term "neural network". While a neural 
network does not have to be adaptive per se, its practical use comes with 
algorithms designed to alter the strength (weights) of the connections in 
the network to produce a desired signal flow. 
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These networks are also similar to the biological neural networks in the 
sense that functions are performed collectively and in parallel by the units, 
rather than there being a clear delineation of subtasks to which various 
units are assigned (see also connectionism). Currently, the term Artificial 
Neural Network (ANN) tends to refer mostly to neural network models 
employed in statistics, cognitive psychology and artificial intelligence. 
Neural network models designed with emulation of the central nervous 
system (CNS) in mind are a subject of theoretical neuroscience 
(computational neuroscience). 
In modern software implementations of artificial neural networks the 
approach inspired by biology has for the most part been abandoned for a 
more practical approach based on statistics and signal processing. In some 
of these systems, neural networks or parts of neural networks (such as 
artificial neurons) are used as components in larger systems that combine 
both adaptive and non-adaptive elements. While the more general 
approach of such adaptive systems is more suitable for real-world problem 
solving, it has far less to do with the traditional artificial intelligence 
connectionist models. What they do have in common, however, is the 
principle of non-linear, distributed, parallel and local processing and 
adaptation. 

Models 
Neural network models in artificial intelligence are usually referred to as 
artificial neural networks (ANNs); these are essentially simple mathematical 
models defining a function .  Each type of ANN model 
corresponds to a class of such functions. 

The network in artificial neural network 

The word network in the term 'artificial neural network' arises because the 
function f(x) is defined as a composition of other functions gi(x), which can 
further be defined as a composition of other functions. This can be 
conveniently represented as a network structure, with arrows depicting the 
dependencies between variables. A widely used type of composition is the 

nonlinear weighted sum, where , where K (commonly 
referred to as the activation function[1]) is some predefined function, such 
as the hyperbolic tangent. It will be convenient for the following to refer to 
a collection of functions gi as simply a vector . 



P. G. GYARMATI: SOME WORDS ABOUT NETWORKS 
------------------------------------------------------------------------------------------------------------------------------- 

 100 

ANN dependency graph 

This figure depicts such a decomposition of f, with dependencies between 
variables indicated by arrows. These can be interpreted in two ways. 
The first view is the functional view: the input x is transformed into a 3-
dimensional vector h, which is then transformed into a 2-dimensional vector 

g, which is finally transformed into f. This view 
is most commonly encountered in the context 
of optimization. 
The second view is the probabilistic view: the 
random variable F = f(G) depends upon the 
random variable G = g(H), which depends upon 
H = h(X), which depends upon the random 

variable X. This view is most commonly encountered in the context of 
graphical models. 

The two views are largely equivalent. In either case, for this particular 
network architecture, the components of individual layers are independent 
of each other (e.g., the components of g are independent of each other 
given their input h). This naturally enables a degree of parallelism in the 
implementation. 

Recurrent ANN dependency graph 
Networks such as the previous one are 
commonly called feedforward, because their 
graph is a directed acyclic graph. Networks with 
cycles are commonly called recurrent. Such 
networks are commonly depicted in the manner 
shown at the top of the figure, where f is shown 
as being dependent upon itself. However, there 
is an implied temporal dependence which is not 
shown. 
 

 

Learning 
What has attracted the most interest in neural networks is the possibility of 
learning. Given a specific task to solve, and a class of functions F, learning 
means using a set of observations to find which solves the task in 
some optimal sense. 
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This entails defining a cost function such that, for the 
optimal solution f * , (i.e., no solution has a cost less 
than the cost of the optimal solution). 
The cost function C is an important concept in learning, as it is a measure of 
how far away a particular solution is from an optimal solution to the 
problem to be solved. Learning algorithms search through the solution 
space to find a function that has the smallest possible cost. 

For applications where the solution is dependent on some data, the cost 
must necessarily be a function of the observations; otherwise we would not 
be modeling anything related to the data. It is frequently defined as a 
statistic to which only approximations can be made. As a simple example 
consider the problem of finding the model f which minimizes 

, for data pairs (x,y) drawn from some distribution . In 
practical situations we would only have N samples from and thus, for the 

above example, we would only minimize . Thus, 
the cost is minimized over a sample of the data rather than the entire data 
set. 
When some form of online machine learning must be used, where 
the cost is partially minimized as each new example is seen. While online 
machine learning is often used when is fixed, it is most useful in the case 
where the distribution changes slowly over time. In neural network 
methods, some form of online machine learning is frequently used for finite 
datasets. 

Choosing a cost function 
While it is possible to define some arbitrary, ad hoc cost function, 
frequently a particular cost will be used, either because it has desirable 
properties (such as convexity) or because it arises naturally from a 
particular formulation of the problem (e.g., in a probabilistic formulation 
the posterior probability of the model can be used as an inverse cost). 
Ultimately, the cost function will depend on the task we wish to perform. 
The three main categories of learning tasks are overviewed below. 

Learning paradigms 

There are three major learning paradigms, each corresponding to a 
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particular abstract learning task. These are supervised learning, 
unsupervised learning and reinforcement learning. Usually any given type of 
network architecture can be employed in any of those tasks. 

Supervised learning 
In supervised learning, we are given a set of example pairs 

and the aim is to find a function in the 
allowed class of functions that matches the examples. In other words, we 
wish to infer the mapping implied by the data; the cost function is related to 
the mismatch between our mapping and the data and it implicitly contains 
prior knowledge about the problem domain. 
A commonly used cost is the mean-squared error which tries to minimize 
the average squared error between the network's output, f(x), and the 
target value y over all the example pairs. When one tries to minimize this 
cost using gradient descent for the class of neural networks called Multi-
Layer Perceptrons, one obtains the common and well-known 
backpropagation algorithm for training neural networks. 

Tasks that fall within the paradigm of supervised learning are pattern 
recognition (also known as classification) and regression (also known as 
function approximation). The supervised learning paradigm is also 
applicable to sequential data (e.g., for speech and gesture recognition). This 
can be thought of as learning with a "teacher," in the form of a function 
that provides continuous feedback on the quality of solutions obtained thus 
far. 

Unsupervised learning 
In unsupervised learning we are given some data x and the cost function to 
be minimized, that can be any function of the data x and the network's 
output, f. 
The cost function is dependent on the task (what we are trying to model) 
and our a priori assumptions (the implicit properties of our model, its 
parameters and the observed variables). 
As a trivial example, consider the model f(x) = a, where a is a constant and 
the cost C = E[(x − f(x))2]. Minimizing this cost will give us a value of a that is 
equal to the mean of the data. The cost function can be much more 
complicated. Its form depends on the application: for example, in 
compression it could be related to the mutual information between x and y, 
whereas in statistical modeling, it could be related to the posterior 
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probability of the model given the data. (Note that in both of those 
examples those quantities would be maximized rather than minimized). 
Tasks that fall within the paradigm of unsupervised learning are in general 
estimation problems; the applications include clustering, the estimation of 
statistical distributions, compression and filtering. 

Reinforcement learning 
In reinforcement learning, data x are usually not given, but generated by an 
agent's interactions with the environment. At each point in time t, the 
agent performs an action yt and the environment generates an observation 
xt and an instantaneous cost ct, according to some (usually unknown) 
dynamics. The aim is to discover a policy for selecting actions that minimizes 
some measure of a long-term cost; i.e., the expected cumulative cost. The 
environment's dynamics and the long-term cost for each policy are usually 
unknown, but can be estimated. 
More formally, the environment is modeled as a Markov decision process 
(MDP) with states and actions with the 
following probability distributions: the instantaneous cost distribution P(ct | 
st), the observation distribution P(xt | st) and the transition P(st + 1 | st,at), 
while a policy is defined as conditional distribution over actions given the 
observations. Taken together, the two define a Markov chain (MC). The aim 
is to discover the policy that minimizes the cost; i.e., the MC for which the 
cost is minimal. 

ANNs are frequently used in reinforcement learning as part of the overall 
algorithm. 
Tasks that fall within the paradigm of reinforcement learning are control 
problems, games and other sequential decision making tasks. 

Learning algorithms 

Training a neural network model essentially means selecting one model 
from the set of allowed models (or, in a Bayesian framework, determining a 
distribution over the set of allowed models) that minimizes the cost 
criterion. There are numerous algorithms available for training neural 
network models; most of them can be viewed as a straightforward 
application of optimization theory and statistical estimation. 

Most of the algorithms used in training artificial neural networks employ 
some form of gradient descent. This is done by simply taking the derivative 
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of the cost function with respect to the network parameters and then 
changing those parameters in a gradient-related direction. 
Evolutionary methods, simulated annealing, expectation-maximization and 
non-parametric methods are some commonly used methods for training 
neural networks. See also machine learning. 
Temporal perceptual learning relies on finding temporal relationships in 
sensory signal streams. In an environment, statistically salient temporal 
correlations can be found by monitoring the arrival times of sensory signals. 
This is done by the perceptual network. 

Employing artificial neural networks 
Perhaps the greatest advantage of ANNs is their ability to be used as an 
arbitrary function approximation mechanism which 'learns' from observed 
data. However, using them is not so straightforward and a relatively good 
understanding of the underlying theory is essential. 

o Choice of model: This will depend on the data representation and the 
application. Overly complex models tend to lead to problems with 
learning.  

o Learning algorithm: There are numerous tradeoffs between learning 
algorithms. Almost any algorithm will work well with the correct 
hyperparameters for training on a particular fixed dataset. However 
selecting and tuning an algorithm for training on unseen data requires a 
significant amount of experimentation.  

o Robustness: If the model, cost function and learning algorithm are 
selected appropriately the resulting ANN can be extremely robust.  

With the correct implementation ANNs can be used naturally in online 
learning and large dataset applications. Their simple implementation and 
the existence of mostly local dependencies exhibited in the structure allows 
for fast, parallel implementations in hardware. 
 

Applications 

The utility of artificial neural network models lies in the fact that they can be 
used to infer a function from observations. This is particularly useful in 
applications where the complexity of the data or task makes the design of 
such a function by hand impractical. 
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Real life applications 

The tasks to which artificial neural networks are applied tend to fall within 
the following broad categories: 
o Function approximation, or regression analysis, including time series 

prediction, fitness approximation and modeling.  

o Classification, including pattern and sequence recognition, novelty 
detection and sequential decision making.  

o Data processing, including filtering, clustering, blind source separation 
and compression.  

o Robotics, including directing manipulators, Computer numerical 
control.  

Application areas include system identification and control (vehicle control, 
process control), quantum chemistry,[2] game-playing and decision making 
(backgammon, chess, racing), pattern recognition (radar systems, face 
identification, object recognition and more), sequence recognition (gesture, 
speech, handwritten text recognition), medical diagnosis, financial 
applications (automated trading systems), data mining (or knowledge 
discovery in databases, "KDD"), visualization and e-mail spam filtering. 

Neural network software 
Neural network software is used to simulate, research, develop and apply 
artificial neural networks, biological neural networks and in some cases a 
wider array of adaptive systems. 

Types of neural networks 

Feedforward neural network 

The feedforward neural network was the first and arguably simplest type of 
artificial neural network devised. In this network, the information moves in 
only one direction, forward, from the input nodes, through the hidden 
nodes (if any) and to the output nodes. There are no cycles or loops in the 
network. 

Radial basis function (RBF) network 

Radial Basis Functions are powerful techniques for interpolation in 
multidimensional space. A RBF is a function which has built into a distance 
criterion with respect to a center. Radial basis functions have been applied 
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in the area of neural networks where they may be used as a replacement 
for the sigmoidal hidden layer transfer characteristic in Multi-Layer 
Perceptrons. RBF networks have two layers of processing: In the first, input 
is mapped onto each RBF in the 'hidden' layer. The RBF chosen is usually a 
Gaussian. In regression problems the output layer is then a linear 
combination of hidden layer values representing mean predicted output. 
The interpretation of this output layer value is the same as a regression 
model in statistics. In classification problems the output layer is typically a 
sigmoid function of a linear combination of hidden layer values, 
representing a posterior probability.  

Performance in both cases is often improved by shrinkage techniques, 
known as ridge regression in classical statistics and known to correspond to 
a prior belief in small parameter values (and therefore smooth output 
functions) in a Bayesian framework. 

RBF networks have the advantage of not suffering from local minima in the 
same way as Multi-Layer Perceptrons. This is because the only parameters 
that are adjusted in the learning process are the linear mapping from 
hidden layer to output layer. Linearity ensures that the error surface is 
quadratic and therefore has a single easily found minimum. In regression 
problems this can be found in one matrix operation. In classification 
problems the fixed non-linearity introduced by the sigmoid output function 
is most efficiently dealt with using iteratively re-weighted least squares. 
RBF networks have the disadvantage of requiring good coverage of the 
input space by radial basis functions. RBF centers are determined with 
reference to the distribution of the input data, but without reference to the 
prediction task. As a result, representational resources may be wasted on 
areas of the input space that are irrelevant to the learning task. A common 
solution is to associate each data point with its own centre, although this 
can make the linear system to be solved in the final layer rather large, and 
requires shrinkage techniques to avoid over fitting. 

Associating each input datum with an RBF leads naturally to kernel methods 
such as Support Vector Machines and Gaussian Processes (the RBF is the 
kernel function). All three approaches use a non-linear kernel function to 
project the input data into a space where the learning problem can be 
solved using a linear model. Like Gaussian Processes, and unlike SVMs, RBF 
networks are typically trained in a Maximum Likelihood framework by 
maximizing the probability (minimizing the error) of the data under the 
model. SVMs take a different approach to avoiding over fitting by 
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maximizing instead a margin. RBF networks are outperformed in most 
classification applications by SVMs. In regression applications they can be 
competitive when the dimensionality of the input space is relatively small. 

Kohonen self-organizing network 
The self-organizing map (SOM) invented by Teuvo Kohonen performs a 
form of unsupervised learning. A set of artificial neurons learn to map 
points in an input space to coordinates in an output space. The input space 
can have different dimensions and topology from the output space, and the 
SOM will attempt to preserve these. 

Recurrent network 

Contrary to feedforward networks, recurrent neural networks (RNs) are 
models with bi-directional data flow. While a feedforward network 
propagates data linearly from input to output, RNs also propagate data 
from later processing stages to earlier stages. 

Simple recurrent network 

A simple recurrent network (SRN) is a variation on the Multi-Layer 
Perceptron, sometimes called an "Elman network" due to its invention by 
Jeff Elman. A three-layer network is used, with the addition of a set of 
"context units" in the input layer. There are connections from the middle 
(hidden) layer to these context units fixed with a weight of one. At each 
time step, the input is propagated in a standard feed-forward fashion, and 
then a learning rule (usually back-propagation) is applied. The fixed back 
connections result in the context units always maintaining a copy of the 
previous values of the hidden units (since they propagate over the 
connections before the learning rule is applied). Thus the network can 
maintain a sort of state, allowing it to perform such tasks as sequence-
prediction that are beyond the power of a standard Multi-Layer Perceptron. 
In a fully recurrent network, every neuron receives inputs from every other 
neuron in the network. These networks are not arranged in layers. Usually 
only a subset of the neurons receive external inputs in addition to the 
inputs from all the other neurons, and another disjunct subset of neurons 
report their output externally as well as sending it to all the neurons. These 
distinctive inputs and outputs perform the function of the input and output 
layers of a feed-forward or simple recurrent network, and also join all the 
other neurons in the recurrent processing. 
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Hopfield network 

The Hopfield network is a recurrent neural network in which all connections 
are symmetric. Invented by John Hopfield in 1982, this network guarantees 
that its dynamics will converge. If the connections are trained using 
Hebbian learning then the Hopfield network can perform as robust content-
addressable (or associative) memory, resistant to connection alteration. 

Echo state network 
The echo state network (ESN) is a recurrent neural network with a sparsely 
connected random hidden layer. The weights of output neurons are the 
only part of the network that can change and be learned. ESN are good to 
(re)produce temporal patterns. 

Long short term memory network 
The Long short term memory is an artificial neural net structure that unlike 
traditional RNNs doesn't have the problem of vanishing gradients. It can 
therefore use long delays and can handle signals that have a mix of low and 
high frequency components. 

Stochastic neural networks 
A stochastic neural network differs from a typical neural network because it 
introduces random variations into the network. In a probabilistic view of 
neural networks, such random variations can be viewed as a form of 
statistical sampling, such as Monte Carlo sampling. 

Boltzmann machine 

The Boltzmann machine can be thought of as a noisy Hopfield network. 
Invented by Geoff Hinton and Terry Sejnowski in 1985, the Boltzmann 
machine is important because it is one of the first neural networks to 
demonstrate learning of latent variables (hidden units). Boltzmann machine 
learning was at first slow to simulate, but the contrastive divergence 
algorithm of Geoff Hinton (circa 2000) allows models such as Boltzmann 
machines and products of experts to be trained much faster. 

Modular neural networks 
Biological studies have shown that the human brain functions not as a 
single massive network, but as a collection of small networks. This 
realization gave birth to the concept of modular neural networks, in which 
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several small networks cooperate or compete to solve problems. 

Committee of machines 
A committee of machines (CoM) is a collection of different neural networks 
that together "vote" on a given example. This generally gives a much better 
result compared to other neural network models. Because neural networks 
suffer from local minima, starting with the same architecture and training 
but using different initial random weights often gives vastly different 
networks. A CoM tends to stabilize the result. 

The CoM is similar to the general machine learning bagging method, except 
that the necessary variety of machines in the committee is obtained by 
training from different random starting weights rather than training on 
different randomly selected subsets of the training data. 

Associative neural network (ASNN) 
The ASNN is an extension of the committee of machines that goes beyond a 
simple/weighted average of different models. ASNN represents a 
combination of an ensemble of feed-forward neural networks and the k-
nearest neighbor technique (kNN). It uses the correlation between 
ensemble responses as a measure of distance amid the analyzed cases for 
the kNN. This corrects the bias of the neural network ensemble. An 
associative neural network has a memory that can coincide with the training 
set. If new data become available, the network instantly improves its 
predictive ability and provides data approximation (self-learn the data) 
without a need to retrain the ensemble.  

Another important feature of ASNN is the possibility to interpret neural 
network results by analysis of correlations between data cases in the space 
of models. The method is demonstrated at www.vcclab.org, where you can 
either use it online or download it. 

Physical neural network 
A physical neural network includes electrically adjustable resistance 
material to simulate artificial synapses. Examples include the ADALINE 
neural network developed by Bernard Widrow in the 1960's and the 
memristor based neural network developed by Greg Snider of HP Labs in 
2008. 
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Holographic associative memory 
Holographic associative memory represents a family of analog, correlation-
based, associative, stimulus-response memories, where information is 
mapped onto the phase orientation of complex numbers operating. 

Instantaneously trained networks 
Instantaneously trained neural networks (ITNNs) were inspired by the 
phenomenon of short-term learning that seems to occur instantaneously. In 
these networks the weights of the hidden and the output layers are 
mapped directly from the training vector data. Ordinarily, they work on 
binary data, but versions for continuous data that require small additional 
processing are also available. 

Spiking neural networks 
Spiking neural networks (SNNs) are models which explicitly take into 
account the timing of inputs. The network input and output are usually 
represented as series of spikes (delta function or more complex shapes). 
SNNs have an advantage of being able to process information in the time 
domain (signals that vary over time). They are often implemented as 
recurrent networks. SNNs are also a form of pulse computer. 
Spiking neural networks with axonal conduction delays exhibit 
polychronization, and hence could have a very large memory capacity.  
Networks of spiking neurons — and the temporal correlations of neural 
assemblies in such networks — have been used to model figure/ground 
separation and region linking in the visual system (see, for example, 
Reitboeck et al.in Haken and Stadler: Synergetics of the Brain. Berlin, 1989). 
In June 2005 IBM announced construction of a Blue Gene supercomputer 
dedicated to the simulation of a large recurrent spiking neural network.  

Gerstner and Kistler have a freely available online textbook on Spiking 
Neuron Models. 

Dynamic neural networks 
Dynamic neural networks not only deal with nonlinear multivariate 
behaviour, but also include (learning of) time-dependent behaviour such as 
various transient phenomena and delay effects. 
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Cascading neural networks 

Cascade-Correlation is an architecture and supervised learning algorithm 
developed by Scott Fahlman and Christian Lebiere. Instead of just adjusting 
the weights in a network of fixed topology, Cascade-Correlation begins with 
a minimal network, then automatically trains and adds new hidden units 
one by one, creating a multi-layer structure. Once a new hidden unit has 
been added to the network, its input-side weights are frozen. This unit then 
becomes a permanent feature-detector in the network, available for 
producing outputs or for creating other, more complex feature detectors. 
The Cascade-Correlation architecture has several advantages over existing 
algorithms: it learns very quickly, the network determines its own size and 
topology, it retains the structures it has built even if the training set 
changes, and it requires no back-propagation of error signals through the 
connections of the network. See: Cascade correlation algorithm. 

Neuro-fuzzy networks 
A neuro-fuzzy network is a fuzzy inference system in the body of an artificial 
neural network. Depending on the FIS type, there are several layers that 
simulate the processes involved in a fuzzy inference like fuzzification, 
inference, aggregation and defuzzification. Embedding an FIS in a general 
structure of an ANN has the benefit of using available ANN training methods 
to find the parameters of a fuzzy system. 

Compositional pattern-producing networks 

Compositional pattern-producing networks (CPPNs) are a variation of ANNs 
which differ in their set of activation functions and how they are applied. 
While typical ANNs often contain only sigmoid functions (and sometimes 
Gaussian functions), CPPNs can include both types of functions and many 
others. Furthermore, unlike typical ANNs, CPPNs are applied across the 
entire space of possible inputs so that they can represent a complete 
image. Since they are compositions of functions, CPPNs in effect encode 
images at infinite resolution and can be sampled for a particular display at 
whatever resolution is optimal. 

One-shot associative memory 

This type of network can add new patterns without the need for re-training. 
It is done by creating a specific memory structure, which assigns each new 
pattern to an orthogonal plane using adjacently connected hierarchical 
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arrays. The network offers real-time pattern recognition and high scalability; 
it however requires parallel processing and is thus best suited for platforms 
such as Wireless sensor networks (WSN), Grid computing, and GPGPUs. 

Theoretical properties 

Computational power 

The multi-layer perceptron (MLP) is a universal function approximator, as 
proven by the Cybenko theorem. However, the proof is not constructive 
regarding the number of neurons required or the settings of the weights. 

Work by Hava Siegelmann and Eduardo D. Sontag has provided a proof that 
a specific recurrent architecture with rational valued weights (as opposed 
to the commonly used floating point approximations) has the full power of 
a Universal Turing Machine[6] using a finite number of neurons and standard 
linear connections. They have further shown that the use of irrational values 
for weights results in a machine with super-Turing power. 

Capacity 

Artificial neural network models have a property called 'capacity', which 
roughly corresponds to their ability to model any given function. It is related 
to the amount of information that can be stored in the network and to the 
notion of complexity. 

Convergence 
Nothing can be said in general about convergence since it depends on a 
number of factors. Firstly, there may exist many local minima. This depends 
on the cost function and the model. Secondly, the optimization method 
used might not be guaranteed to converge when far away from a local 
minimum. Thirdly, for a very large amount of data or parameters, some 
methods become impractical. In general, it has been found that theoretical 
guarantees regarding convergence are an unreliable guide to practical 
application. 

Generalization and statistics 

In applications where the goal is to create a system that generalizes well in 
unseen examples, the problem of overtraining has emerged.  
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Confidence analysis of a neural network 

This arises in overcomplex or overspecified systems when the capacity of 
the network significantly exceeds the needed free parameters. There are 
two schools of thought for avoiding this problem: The first is to use cross-

validation and similar 
techniques to check for 
the presence of 
overtraining and 
optimally select hyper-
parameters such as to 
minimize the 
generalization error. The 
second is to use some 
form of regularization. 
This is a concept that 
emerges naturally in a 
probabilistic (Bayesian) 

framework, where the regularization can be performed by selecting a larger 
prior probability over simpler models; but also in statistical learning theory, 
where the goal is to minimize over two quantities: the 'empirical risk' and 
the 'structural risk', which roughly correspond to the error over the training 
set and the predicted error in unseen data due to over fitting. 

Supervised neural networks that use an MSE cost function can use formal 
statistical methods to determine the confidence of the trained model. The 
MSE on a validation set can be used as an estimate for variance. This value 
can then be used to calculate the confidence interval of the output of the 
network, assuming a normal distribution. A confidence analysis made this 
way is statistically valid as long as the output probability distribution stays 
the same and the network is not modified. 
By assigning a softmax activation function on the output layer of the neural 
network (or a softmax component in a component-based neural network) 
for categorical target variables, the outputs can be interpreted as posterior 
probabilities. This is very useful in classification as it gives a certainty 
measure on classifications. 
The softmax activation function is:  

Dynamic properties 

Various techniques originally developed for studying disordered magnetic 
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systems (i.e., the spin glass) have been successfully applied to simple neural 
network architectures, such as the Hopfield network. Influential work by E. 
Gardner and B. Derrida has revealed many interesting properties about 
perceptrons with real-valued synaptic weights, while later work by W. 
Krauth and M. Mezard has extended these principles to binary-valued 
synapses. 

A single-layer feedforward artificial neural network. 

Arrows originating from x2 are 
omitted for clarity. There are p inputs 
to this network and q outputs. There 
is no activation function (or 
equivalently, the activation function 
is g(x) = x). In this system, the value 
of the qth output, yq would be 

calculated as  
 

A two-layer feedforward artificial neural network. 
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17. Perceptron 
The perceptron is a type of artificial neural network invented in 1957 at the 
Cornell Aeronautical Laboratory by Frank Rosenblatt. It can be seen as the 
simplest kind of feedforward neural network: a linear classifier. 

Definition 
The Perceptron is a binary classifier that maps its input x (a real-valued 
vector) to an output value f(x) (a single binary value) across the matrix. 

 
where w is a vector of real-valued weights and is the dot product 
(which computes a weighted sum). b is the 'bias', a constant term that does 
not depend on any input value. 

The value of f(x) (0 or 1) is used to classify x as either a positive or a 
negative instance, in the case of a binary classification problem. The bias 
can be thought of as offsetting the activation function, or giving the output 
neuron a "base" level of activity. If b is negative, then the weighted 
combination of inputs must produce a positive value greater than | b | in 
order to push the classifier neuron over the 0 threshold. Spatially, the bias 
alters the position (though not the orientation) of the decision boundary. 
Since the inputs are fed directly to the output unit via the weighted 
connections, the perceptron can be considered the simplest kind of feed-
forward neural network. 

Learning algorithm 

The learning algorithm is the same across all neurons, therefore everything 
that follows is applied to a single neuron in isolation. We first define some 
variables: 
o x(j) denotes the j-th item in the n-dimensional input vector  
o w(j) denotes the j-th item in the weight vector  

o f(x) denotes the output from the neuron when presented with input x  

o α is a constant where (learning rate)  
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Further, assume for convenience that the bias term b is zero. This is not a 
restriction since an extra dimension n + 1 can be added to the input vectors 
x with x(n + 1) = 1, in which case w(n + 1) replaces the bias term. 

The appropriate weights are 
applied to the inputs, and the 
resulting weighted sum passed 
to a function which produces 
the output y. 

Learning is modeled as the 
weight vector being updated 
for multiple iterations over all 
training examples. Let 

denote a training set of m training examples, where xi is the input vector to 
the perceptron and yi is the desired output value of the perceptron for that 
input vector. 
Each iteration the weight vector is updated as follows: 

For each (x,y) pair in  

 
Note that this means that a change in the weight vector will only take place 
for a given training example (x,y) if its output f(x) is different from the 
desired output y. 
The initialization of w is usually performed simply by setting w(j): = 0 for all 
elements w(j). 

Separability and Convergence 

The training set Dm is said to be linearly separable if there exists a positive 
constant γ and a weight vector w such that for all i. 
That is, if we say that w is the weight vector to the perceptron, then the 
output of the perceptron, , multiplied by the desired output of 
the perceptron, yi, must be greater than the positive constant, γ, for all 
input-vector/output-value pairs (xi,yi) in Dm. 

Novikoff (1962) proved that the perceptron algorithm converges after a 
finite number of iterations if the data set is linearly separable. The idea of 
the proof is that the weight vector is always adjusted by a bounded amount 
in a direction that it has a negative dot product with, and thus can be 
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bounded above by where t is the number of changes to the weight 
vector, but it can also be bounded below by O(t) because if there exists an 
(unknown) satisfactory weight vector, then every change makes progress in 
this (unknown) direction by a positive amount that depends only on the 
input vector. This can be used to show that the number of mistakes 
(changes to the weight vector, i.e. t) is bounded by (2R / γ)2 where R is the 
maximum norm of an input vector. However, if the training set is not 
linearly separable, the above online algorithm will not converge. 

Note that the decision boundary of a perceptron is invariant with respect to 
scaling of the weight vector, i.e. a perceptron trained with initial weight 
vector w and learning rate α is an identical estimator to a perceptron 
trained with initial weight vector w / α and learning rate 1. Thus, since the 
initial weights become irrelevant with increasing number of iterations, the 
learning rate does not matter in the case of the perceptron and is usually 
just set to one. 

Variants 

The pocket algorithm with ratchet (Gallant, 1990) solves the stability 
problem of perceptron learning by keeping the best solution seen so far "in 
its pocket". The pocket algorithm then returns the solution in the pocket, 
rather than the last solution. 
The α-perceptron further utilized a preprocessing layer of fixed random 
weights, with threshold output units. This enabled the perceptron to 
classify analogue patterns, by projecting them into a binary space. In fact, 
for a projection space of sufficiently high dimension, patterns can become 
linearly separable. 
As an example, consider the case of having to classify data into two classes. 
Here is a small such data set, consisting of two points coming from two 
Gaussian distributions. 
A linear classifier can only separate things with a hyperplane, so it's not 
possible to classify all the examples perfectly. On the other hand, we may 
project the data into a large number of dimensions. In this case a random 
matrix was used to project the data linearly to a 1000-dimensional space; 
then each resulting data point was transformed through the hyperbolic 
tangent function. A linear classifier can then separate the data, as shown in 
the third figure. However the data may still not be completely separable in 
this space, in which the perceptron algorithm would not converge. In the 
example shown, stochastic steepest gradient descent was used to adapt 
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the parameters. 
Furthermore, by adding nonlinear layers between the input and output, one 
can separate all data and indeed, with enough training data, model any well-
defined function to arbitrary precision. This model is a generalization known 
as a multilayer perceptron. 
It should be kept in mind, however, that the best classifier is not necessarily 
that which classifies all the training data perfectly. Indeed, if we had the 
prior constraint that the data come from equi-variant Gaussian 
distributions, the linear separation in the input space is optimal. 
Other training algorithms for linear classifiers are possible: see, e.g., support 
vector machine and logistic regression. 

Multiclass perceptron 

Like most other techniques for training linear classifiers, the perceptron 
generalizes naturally to multiclass classification. Here, the input x and the 
output y are drawn from arbitrary sets. A feature representation function 
f(x,y) maps each possible input/output pair to a finite-dimensional real-
valued feature vector. As before, the feature vector is multiplied by a 
weight vector w, but now the resulting score is used to choose among 
many possible outputs: 

 
Learning again iterates over the examples, predicting an output for each, 
leaving the weights unchanged when the predicted output matches the 
target, and changing them when it does not. The update becomes: 

 
This multiclass formulation reduces to the original perceptron when x is a 
real-valued vector, y is chosen from {0,1}, and f(x,y) = yx. 

For certain problems, input/output representations and features can be 
chosen so that can be found efficiently even though y is 
chosen from a very large or even infinite set. 
In recent years, perceptron training has become popular in the field of 
natural language processing for such tasks as part-of-speech tagging and 
syntactic parsing (Collins, 2002). 

History 

Although the perceptron initially seemed promising, it was eventually 
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proved that perceptrons could not be trained to recognize many classes of 
patterns. This led to the field of neural network research stagnating for 
many years, before it was recognized that a feedforward neural network 
with two or more layers (also called a multilayer perceptron) had far greater 
processing power than perceptrons with one layer (also called a single layer 
perceptron). Single layer perceptrons are only capable of learning linearly 
separable patterns; in 1969 a famous book entitled Perceptrons by Marvin 
Minsky and Seymour Papert showed that it was impossible for these classes 
of network to learn an XOR function. They conjectured (incorrectly) that a 
similar result would hold for a perceptron with three or more layers. Three 
years later Stephen Grossberg published a series of papers introducing 
networks capable of modeling differential, contrast-enhancing and XOR 
functions. (The papers were published in 1972 and 1973, see e.g.: Grossberg, 
Contour enhancement, short-term memory, and constancies in 
reverberating neural networks. Studies in Applied Mathematics, 52 (1973), 
213-257, online [1]). Nevertheless the often-cited Minsky/Papert text caused 
a significant decline in interest and funding of neural network research. It 
took ten more years until neural network research experienced a 
resurgence in the 1980s. This text was reprinted in 1987 as "Perceptrons - 
Expanded Edition" where some errors in the original text are shown and 
corrected. 
More recently, interest in the perceptron learning algorithm has increased 
again after Freund and Schapire (1998) presented a voted formulation of 
the original algorithm (attaining large margin) and suggested that one can 
apply the kernel trick to it. 
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18. Cluster diagram 
A Cluster diagram or clustering diagram is a general type of diagram, which 
represents some kind of cluster. A cluster in general is a group or bunch of 
several discrete items that are close to each other.  

The cluster diagram figures a cluster, such as a network diagram figures a 
network, a flow diagram a process or movement of objects, and a tree 
diagram an abstract tree. But all these diagrams can be considered 
interconnected: A network diagram can be seen as a special orderly 
arranged kind of cluster diagram. A cluster diagram is a mesh kind of 
network diagram. A flow diagram can be seen as a line type of network 
diagram, and a tree diagram a tree type of network diagram. 

Types of cluster diagrams 
Specific types of cluster diagrams are: 

 

Comparison of sky scraper 

 

Astronomic cluster of the  
Messier 3 globular cluster 

 

Biositemap 

 

Cluster chart in brainstorming 
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o In architecture a comparison diagram is sometimes called a cluster 
diagram.  

o In astronomy diagrams of star cluster, galaxy groups and clusters or 
globular cluster.  

o In brainstorming a cluster diagrams is also called cloud diagram. They 
can be considered "are types of non-linear graphic organizer that can 
help to systematize the generation of ideas based upon a central topic. 
Using this type of diagram... can more easily brainstorm a theme, 
associate about an idea, or explore a new subject". Also, the term 
cluster diagrams are sometimes used as synonym of mind maps". 

         

Computer architecture of a PC 

 

Computer Network  

 

Internet 

 

System context  

o In computer science more complex diagrams of computer networks, 
computer architecture, file systems and internet can be considered 
cluster diagrams.  
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o In information visualization specific visual representation of large-scale 
collections of non-numerical information are sometimes drawn in the 
shape of a cluster diagram.  

o In quantum field theory for example, according to Crawford (1998), the 
called coupled cluster diagram is a "simple diagrammatic formalism 
popularized by Kucharski and Bartlett [in 1986] by which one may 
construct the coupled cluster energy and amplitude equations far more 
quickly than by direct application of Wick's theorem". 

 

UML Class  

          

UML Component 

 

UML Composite structure 

 

UML Deployment 

o In the Unified Modeling Language (UML) all structure diagrams can be 
considered cluster diagrams. These structure diagrams emphasize what 
things must be in the system being modeled. UML encounters here the 
Class diagram, Component diagram, Composite structure diagram, 
Deployment diagram, Object diagram, and the Package diagram.  
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19. Scale-free network 
A scale-free network is a network whose degree distribution follows a 
power law, at least asymptotically. That is, the fraction P(k) of nodes in the 
network having k connections to other nodes goes for large values of k as 
P(k) ~ k−γ where γ is a constant whose value is typically in the range 2<γ<3, 
although occasionally it may lie outside these bounds. 
Scale-free networks are noteworthy because many empirically observed 
networks appear to be scale-free, including the protein networks, citation 
networks, and some social networks.  

Highlights 
o Scale-free networks show a power law degree distribution like many 

real networks.  
o The mechanism of preferential attachment has been proposed as an 

underlying generative model to explain power law degree distributions 
in some networks.  

o It has also been demonstrated that scale-free topologies in networks of 
fixed sizes can arise as a result of Dual Phase Evolution.  

History 

In studies of the networks of citations between scientific papers, Derek de 
Solla Price showed in 1965 that the number of links to papers—i.e., the 
number of citations they receive—had a heavy-tailed distribution following 
a Pareto distribution or power law, and thus that the citation network was 
scale-free. He did not however use the term "scale-free network" (which 
was not coined until some decades later). In a later paper in 1976, Price also 
proposed a mechanism to explain the occurrence of power laws in citation 
networks, which he called "cumulative advantage" but which is today more 
commonly known under the name preferential attachment. 
Recent interest in scale-free networks started in 1999 with work by Albert-
László Barabási and colleagues at the University of Notre Dame who 
mapped the topology of a portion of the Web (Barabási and Albert 1999), 
finding that some nodes, which they called "hubs", had many more 
connections than others and that the network as a whole had a power-law 
distribution of the number of links connecting to a node. 
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After finding that a few other networks, including some social and 
biological networks, also had heavy-tailed degree distributions, Barabási 
and collaborators coined the term "scale-free network" to describe the 
class of networks that exhibit a power-law degree distribution. Soon after, 
Amaral et al. showed that most of the real-world networks can be classified 
into two large categories according to the decay of P(k) for large k. Caroline 
S. Wagner (2008) demonstrated that scientific collaboration at the global 
level falls into scale free network structures along a power law form. 
Barabási and Albert proposed a mechanism to explain the appearance of 
the power-law distribution, which they called "preferential attachment" and 
which is essentially the same as that proposed by Price. Analytic solutions 
for this mechanism (also similar to the solution of Price) were presented in 
2000 by Dorogovtsev, Mendes and Samukhin and independently by 
Krapivsky, Redner, and Leyvraz, and later rigorously proved by 
mathematician Béla Bollobás. Notably, however, this mechanism only 
produces a specific subset of networks in the scale-free class, and many 
alternative mechanisms have been discovered since. 
Although the scientific community is still debating the usefulness of the 
scale-free term in reference to networks, Li et al. (2005) recently offered a 
potentially more precise "scale-free metric". Briefly, let g be a graph with 
edge-set ε, and let the degree (number of edges) at a vertex i be di. Define 

 
This is maximized when high-degree nodes are connected to other high-
degree nodes. Now define 

 
where smax is the maximum value of s(h) for h in the set of all graphs with an 
identical degree distribution to g. This gives a metric between 0 and 1, such 
that graphs with low S(g) are "scale-rich", and graphs with S(g) close to 1 
are "scale-free". This definition captures the notion of self-similarity implied 
in the name "scale-free". 

Characteristics and examples 
Random network (a) and scale-free network (b). In the scale-free network, 
the larger hubs are highlighted. 
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As with all systems characterized by a power law distribution, the most 
notable characteristic in a scale-free network is the relative commonness of 
vertices with a degree that greatly exceeds the average. The highest-degree 
nodes are often called "hubs", and are thought to serve specific purposes in 
their networks, although this depends greatly on the domain. 
The power law distribution highly influences the network topology. It turns 
out that the major hubs are closely followed by smaller ones. These, in turn, 
are followed by other nodes with an even smaller degree and so on. This 
hierarchy allows for fault tolerant behavior in the face of random failures: 
since the vast majority of nodes are those with small degree, the likelihood 
that a hub would be affected is almost negligible. Even if such event occurs, 
the network will not lose its connectedness, which is guaranteed by the 
remaining hubs. On the other hand, if a few major hubs are removed from 
the network, it simply falls apart and is turned into a set of rather isolated 
graphs. Thus hubs are both the strength of scale-free networks and their 
Achilles' heel. 
Another important characteristic of scale-free networks is the clustering 
coefficient distribution, which decreases as the node degree increases. This 
distribution also follows a power law. That means that the low-degree 
nodes belong to very dense sub-graphs and those sub-graphs are 
connected to each other through hubs. Consider a social network in which 
nodes are people and links are acquaintance relationships between people. 
It is easy to see that people tend to form communities, i.e., small groups in 
which everyone knows everyone (one can think of such community as a 
complete graph). In addition, the members of a community also have a few 
acquaintance relationships to people outside that community. Some 
people, however, are so related to other people (e.g., celebrities, 
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politicians) that they are connected to a large number of communities. 
Those people may be considered the hubs responsible for making such 
networks small-world networks. 

At present, the more specific characteristics of scale-free networks can only 
be discussed in either the context of the generative mechanism used to 
create them, or the context of a particular real-world network thought to 
be scale-free. For instance, networks generated by preferential attachment 
typically place the high-degree vertices in the middle of the network, 
connecting them together to form a core, with progressively lower-degree 
nodes making up the regions between the core and the periphery. Many 
interesting results are known for this subclass of scale-free networks. For 
instance, the random removal of even a large fraction of vertices impacts 
the overall connectedness of the network very little, while targeted attacks 
destroys the connectedness very quickly. Other scale-free networks, which 
place the high-degree vertices at the periphery, do not exhibit these 
properties; notably, the structure of the Internet is more like this latter kind 
of network than the kind built by preferential attachment. Indeed, many of 
the results about scale-free networks have been claimed to apply to the 
Internet, but are disputed by Internet researchers and engineers.  
As with most disordered networks, such as the small world network model, 
the average distance between two vertices in the network is very small 
relative to a highly ordered network such as a lattice. The clustering 
coefficient of scale-free networks can vary significantly depending on other 
topological details, and there are now generative mechanisms that allow 
one to create such networks that have a high density of triangles. 

It is interesting that Cohen and Havlin proved that uncorrelated power-law 
graphs having 2 < γ < 3 will also have ultra small diameter d ~ ln ln N. So from 
the practical point of view, the diameter of a growing scale-free network 
might be considered almost constant. 

Although many real-world networks are thought to be scale-free, the 
evidence remains inconclusive, primarily because the generative 
mechanisms proposed have not been rigorously validated against the real-
world data. As such, it is too early to rule out alternative hypotheses. A few 
examples of networks claimed to be scale-free include: 

o Some social networks, including collaboration networks. An example 
that has been studied extensively is the collaboration of movie actors in 
films.  

o Protein-Protein interaction networks.  
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o Networks of sexual partners in humans, which affects the dispersal of 
sexually transmitted diseases.  

o Many kinds of computer networks, including the World Wide Web. 

o Semantic networks.  

Generative models 

These scale-free networks do not arise by chance alone. Erdős and Rényi 
(1960) studied a model of growth for graphs in which, at each step, two 
nodes are chosen uniformly at random and a link is inserted between them. 
The properties of these random graphs are not consistent with the 
properties observed in scale-free networks, and therefore a model for this 
growth process is needed. 
The scale-free properties of the Web have been studied, and its distribution 
of links is very close to a power law, because there are a few Web sites with 
huge numbers of links, which benefit from a good placement in search 
engines and an established presence on the Web. Those sites are the ones 
that attract more of the new links. This has been called the winner takes all 
phenomenon. 
The most widely known generative model for a subset of scale-free 
networks is Barabási and Albert's (1999) rich get richer generative model in 
which each new Web page creates links to existing Web pages with a 
probability distribution which is not uniform, but proportional to the 
current in-degree of Web pages. This model was originally discovered by 
Derek J. de Solla Price in 1965 under the term cumulative advantage, but 
did not reach popularity until Barabási rediscovered the results under its 
current name (BA Model). According to this process, a page with many in-
links will attract more in-links than a regular page. This generates a power-
law but the resulting graph differs from the actual Web graph in other 
properties such as the presence of small tightly connected communities. 
More general models and networks characteristics have been proposed and 
studied (for a review see the book by Dorogovtsev and Mendes). 

A different generative model is the copy model studied by Kumar et al. 
(2000), in which new nodes choose an existent node at random and copy a 
fraction of the links of the existent node. This also generates a power law. 

However, if we look at communities of interests in a specific topic, 
discarding the major hubs of the Web, the distribution of links is no longer a 
power law but resembles more a log-normal distribution, as observed by 
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Pennock et al. (2002) in the communities of the home pages of universities, 
public companies, newspapers and scientists. Based on these observations, 
they propose a generative model that mixes preferential attachment with a 
baseline probability of gaining a link. 

The growth of the networks (adding new nodes) is not a necessary 
condition for creating a scale-free topology. For instance, it has been shown 
[2] that Dual Phase Evolution can produce scale-free topologies in networks 
of a fixed size. Dangalchev (2004) gives examples of generating static scale-
free networks. Another possibility (Caldarelli et al. 2002) is to consider the 
structure as static and draw a link between vertices according to a 
particular property of the two vertices involved. Once specified the 
statistical distribution for these vertices properties (fitnesses), it turns out 
that in some circumstances also static networks develop scale-free 
properties. 

Recently, Manev and Manev (Med. Hypotheses, 2005) proposed that small 
world networks may be operative in adult brain neurogenesis. Adult 
neurogenesis has been observed in mammalian brains, including those of 
humans, but a question remains: how do new neurons become functional in 
the adult brain? It is proposed that the random addition of only a few new 
neurons functions as a maintenance system for the brain's "small-world" 
networks. Randomly added to an orderly network, new links enhance signal 
propagation speed and synchronizability. Newly generated neurons are 
ideally suited to become such links: they are immature, form more new 
connections compared to mature ones, and their number but not their 
precise location may be maintained by continuous proliferation and dying 
off. Similarly, it is envisaged that the treatment of brain pathologies by cell 
transplantation would also create new random links in small-world 
networks and that even a small number of successfully incorporated new 
neurons may be functionally important. 
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20. Power law 
An example power law graph, being used to demonstrate ranking of 
popularity. To the right is the long tail, to the left are the few that dominate 
(also known as the 80-20 rule). 

 
 

A power law is a special kind of mathematical relationship between two 
quantities. When the number or frequency of an object or event varies as a 
power of some attribute of that object (e.g., its size), the number or 
frequency is said to follow a power law.  
For instance, the number of cities having a certain population size is found 
to vary as a power of the size of the population, and hence follows a power 
law.  
Power laws govern a wide variety of natural and man-made phenomena, 
including frequencies of words in most languages, frequencies of family 
names, sizes of craters on the moon and of solar flares, the sizes of power 
outages, earthquakes, and wars, the popularity of books and music, and 
many other quantities. 

Technical definition 
A power law is any polynomial relationship that exhibits the property of 
scale invariance. The most common power laws relate two variables and 
have the form  
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where a and k are constants, and o(xk) is an asymptotically small function of 
xk. Here, k is typically called the scaling exponent, where the word "scaling" 
denotes the fact that a power-law function satisfies where c is 
a constant. Thus, a rescaling of the function's argument changes the 
constant of proportionality but preserves the shape of the function itself. 
This point becomes clearer if we take the logarithm of both sides: 

 
Notice that this expression has the form of a linear relationship with slope 
k. Rescaling the argument produces a linear shift of the function up or 
down but leaves both the basic form and the slope k unchanged. 
Power-law relations characterize a staggering number of naturally occurring 
phenomena, and this is one of the principal reasons why they have 
attracted such wide interest. For instance, inverse-square laws, such as 
gravitation and the Coulomb force, are power laws, as are many common 
mathematical formulae such as the quadratic law of area of the circle. 
However much of the recent interest in power laws comes from the study 
of probability distributions: it's now known that the distributions of a wide 
variety of quantities seem to follow the power-law form, at least in their 
upper tail (large events).  
The behavior of these large events connects these quantities to the study of 
theory of large deviations (also called extreme value theory), which 
considers the frequency of extremely rare events like stock market crashes 
and large natural disasters. It is primarily in the study of statistical 
distributions that the name "power law" is used; in other areas the power-
law functional form is more often referred to simply as a polynomial form or 
polynomial function. 
Scientific interest in power law relations stems partly from the ease with 
which certain general classes of mechanisms generate them. The 
demonstration of a power-law relation in some data can point to specific 
kinds of mechanisms that might underlie the natural phenomenon in 
question, and can indicate a deep connection with other, seemingly 
unrelated systems (see the reference by Simon and the subsection on 
universality below). The ubiquity of power-law relations in physics is partly 
due to dimensional constraints, while in complex systems, power laws are 
often thought to be signatures of hierarchy or of specific stochastic 
processes.  
A few notable examples of power laws are the Gutenberg-Richter law for 
earthquake sizes, Pareto's law of income distribution, structural self-
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similarity of fractals, and scaling laws in biological systems. Research on the 
origins of power-law relations, and efforts to observe and validate them in 
the real world, is an active topic of research in many fields of science, 
including physics, computer science, linguistics, geophysics, sociology, 
economics and more. 

Properties of power laws 

Scale invariance 

The main property of power laws that makes them interesting is their scale 
invariance. Given a relation f(x) = axk, scaling the argument x by a constant 
factor causes only a proportionate scaling of the function itself. That is, 

 
That is, scaling by a constant simply multiplies the original power-law 
relation by the constant ck. Thus, it follows that all power laws with a 
particular scaling exponent are equivalent up to constant factors, since 
each is simply a scaled version of the others. This behavior is what produces 
the linear relationship when both logarithms are taken of both f(x) and x, 
and the straight-line on the log-log plot is often called the signature of a 
power law. Notably, however, with real data, such straightness is necessary, 
but not a sufficient condition for the data following a power-law relation. In 
fact, there are many ways to generate finite amounts of data that mimic 
this signature behavior, but, in their asymptotic limit, are not true power 
laws. Thus, accurately fitting and validating power-law models is an active 
area of research in statistics. 

Universality 
The equivalence of power laws with a particular scaling exponent can have 
a deeper origin in the dynamical processes that generate the power-law 
relation. In physics, for example, phase transitions in thermodynamic 
systems are associated with the emergence of power-law distributions of 
certain quantities, whose exponents are referred to as the critical 
exponents of the system. Diverse systems with the same critical exponents 
— that is, which display identical scaling behavior as they approach 
criticality — can be shown, via renormalization group theory, to share the 
same fundamental dynamics. For instance, the behavior of water and CO2 at 
their boiling points fall in the same universality class because they have 
identical critical exponents. In fact, almost all material phase transitions are 
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described by a small set of universality classes. Similar observations have 
been made, though not as comprehensively, for various self-organized 
critical systems, where the critical point of the system is an attractor. 
Formally, this sharing of dynamics is referred to as universality, and systems 
with precisely the same critical exponents are said to belong to the same 
universality class. 

Power-law functions 

The general power-law function follows the polynomial form given above, 
and is a ubiquitous form throughout mathematics and science. Notably, 
however, not all polynomial functions are power laws because not all 
polynomials exhibit the property of scale invariance. Typically, power-law 
functions are polynomials in a single variable, and are explicitly used to 
model the scaling behavior of natural processes. For instance, allometric 
scaling laws for the relation of biological variables are some of the best 
known power-law functions in nature. In this context, the o(xk) term is most 
typically replaced by a deviation term ε, which can represent uncertainty in 
the observed values (perhaps measurement or sampling errors) or provide 
a simple way for observations to deviate from the no power-law function 
(perhaps for stochastic reasons): 

 

Examples of power law functions 
o The Stevens' power law of psychophysics  
o The Stefan–Boltzmann law  
o The Ramberg-Osgood stress-strain relationship  
o The Inverse-square laws of Newtonian gravity and Electrostatics  
o Electrostatic potential and Gravitational potential  
o Model of van der Waals force  
o Force and potential in Simple harmonic motion  
o Kepler's third law  
o The Initial mass function  
o Gamma correction relating light intensity with voltage  
o Kleiber's law relating animal metabolism to size, and allometric laws in 

general  
o Behaviour near second-order phase transitions involving critical 

exponents  
o Proposed form of experience curve effects  
o The differential energy spectrum of cosmic-ray nuclei  
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o Square-cube law (ratio of surface area to volume)  
o Constructal law  
o Fractals  
o The Pareto principle also called the "80-20 rule"  
o Zipf's Law in corpus analysis and population distributions amongst 

others, where frequency of an item or event is inversely proportional to 
its frequency rank (i.e. the second most frequent item/event occurring 
half as often the most frequent item and so on).  

o Weight vs. length models in fish  

Power-law distributions 

A power-law distribution is any that, in the most general sense, has the 
form 

 
where α > 1, and L(x) is a slowly varying function, which is any function that 

satisfies   with t constant. This property of L(x) 
follows directly from the requirement that p(x) be asymptotically scale 
invariant; thus, the form of L(x) only controls the shape and finite extent of 
the lower tail. For instance, if L(x) is the constant function, then we have a 
power-law that holds for all values of x. In many cases, it is convenient to 
assume a lower bound xmin from which the law holds. Combining these two 
cases, and where x is a continuous variable, the power law has the form 

 
where the pre-factor to x − α is the normalizing constant. We can now 
consider several properties of this distribution. For instance, its moments 
are given by 

 
which is only well defined for m < α − 1. That is, all moments  
diverge: when α < 2, the average and all higher-order moments are infinite; 
when 2 < α < 3, the mean exists, but the variance and higher-order moments 
are infinite, etc. For finite-size samples drawn from such distribution, this 
behavior implies that the central moment estimators (like the mean and the 
variance) for diverging moments will never converge - as more data is 
accumulated, they continue to grow. 
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Another kind of power-law distribution, which does not satisfy the general 
form above, is the power law with an exponential cutoff 

 
In this distribution, the exponential decay term e − λx eventually overwhelms 
the power-law behavior at very large values of x. This distribution does not 
scale and is thus not asymptotically a power law; however, it does 
approximately scale over a finite region before the cutoff. (Note that the 
pure form above is a subset of this family, with λ = 0.) This distribution is a 
common alternative to the asymptotic power-law distribution because it 
naturally captures finite-size effects. For instance, although the Gutenberg–
Richter law is commonly cited as an example of a power-law distribution, 
the distribution of earthquake magnitudes cannot scale as a power law in 
the limit because there is a finite amount of energy in the Earth's 
crust and thus there must be some maximum size to an earthquake. As the 
scaling behavior approaches this size, it must taper off. 

Plotting power-law distributions 

In general, power-law distributions are plotted on double logarithmic axes, 
which emphasizes the upper tail region. The most convenient way to do this 
is via the (complementary) cumulative distribution, P(x) = Pr(X > x), 

 
Note that the cumulative distribution (cdf) is also a power-law function, but 
with a smaller scaling exponent. For data, an equivalent form of the cdf is 
the rank-frequency approach, in which we first sort the n observed values in 
ascending order, and plot them against the vector 

 . 
Although it can be convenient to log-bin the data, or otherwise smooth the 
probability density (mass) function directly, these methods introduce an 
implicit bias in the representation of the data, and thus should be avoided. 
The cdf, on the other hand, introduces no bias in the data and preserves the 
linear signature on doubly logarithmic axes. 

Estimating the exponent from empirical data 
There are many ways of estimating the value of the scaling exponent for a 
power-law tail, however not all of them yield unbiased and consistent 
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answers. The most reliable techniques are often based on the method of 
maximum likelihood. Alternative methods are often based on making a 
linear regression on either the log-log probability, the log-log cumulative 
distribution function, or on log-binned data, but these approaches should 
be avoided as they can all lead to highly biased estimates of the scaling 
exponent. 
For real-valued data, we fit a power-law distribution of the form 

 
to the data . Given a choice for xmin, a simple derivation by this 
method yields the estimator equation 

 
where {xi} are the n data points . (For a more detailed derivation, 
see Hall or Newman below.) This estimator exhibits a small finite sample-
size bias of order O(n − 1), which is small when n > 100. Further, the 
uncertainty in the estimation can be derived from the maximum likelihood 

argument, and has the form . This estimator is equivalent to the 
popular Hill estimator from quantitative finance and extreme value theory. 

For a set of n integer-valued data points {xi}, again where each , 
the maximum likelihood exponent is the solution to the transcendental 
equation 

 
where ζ(α,xmin) is the incomplete zeta function. The uncertainty in this 
estimate follows the same formula as for the continuous equation. 
However, the two equations for  are not equivalent, and the continuous 
version should not be applied to discrete data, nor vice versa. 

Further, both of these estimators require the choice of xmin. For functions 
with a non-trivial L(x) function, choosing xmin too small produces a 
significant bias in , while choosing it too large increases the uncertainty in 

, and reduces the statistical power of our model. In general, the best 
choice of xmin depends strongly on the particular form of the lower tail, 
represented by L(x) above. 
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More about these methods, and the conditions under which they can be 
used, can be found in the Clauset et al. reference below. Further, this 
comprehensive review article provides usable code (Matlab and R) for 
estimation and testing routines for power-law distributions. 

Examples of power-law distributions 
o Pareto distribution (continuous)  
o Zeta distribution (discrete)  
o Yule–Simon distribution (discrete)  
o Student's t-distribution (continuous), of which the Cauchy distribution 

is a special case  
o Zipf's law and its generalization, the Zipf-Mandelbrot law (discrete)  
o Lotka's law  
o The scale-free network model  
o Bibliograms  
o Gutenberg–Richter law of earthquake magnitudes  
o Horton's laws describing river systems  
o Richardson's Law for the severity of violent conflicts (wars and 

terrorism)  
o population of cities  
o numbers of religious adherents  
o net worth of individuals  
o frequency of words in a text  
o Pink noise  
o 90-9-1 principle on wikis  
A great many power-law distributions have been conjectured in recent 
years. For instance, power laws are thought to characterize the behavior of 
the upper tails for the popularity of websites, number of species per genus, 
the popularity of given names, the size of financial returns, and many 
others. However, much debate remains as to which of these tails are 
actually power-law distributed and which are not. For instance, it is 
commonly accepted now that the famous Gutenberg–Richter law decays 
more rapidly than a pure power-law tail because of a finite exponential 
cutoff in the upper tail. 

Validating power laws 

Although power-law relations are attractive for many theoretical reasons, 
demonstrating that data do indeed follow a power-law relation requires 
more than simply fitting such a model to the data. In general, many 
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alternative functional forms can appear to follow a power-law form for 
some extent. Thus, the preferred method for validation of power-law 
relations is by testing many orthogonal predictions of a particular 
generative mechanism against data, and not simply fitting a power-law 
relation to a particular kind of data. As such, the validation of power-law 
claims remains a very active field of research in many areas of modern 
science.  

References 

1. Simon, H. A. (1955). "On a Class of Skew Distribution Functions". 
Biometrika 42: 425–440. doi:10.2307/2333389. 
http://links.jstor.org/sici?sici= 
00063444%28195512%2942%3A3%2F4%3C425%3AOACOSD%3E2.0.CO%3B2-
M.  

2. Hall, P. (1982). "On Some Simple Estimates of an Exponent of Regular 
Variation". J. of the Royal Statistical Society, Series B (Meth) 44 (1): 37–
42. 
http://links.jstor.org/sici?sici=00359246(1982)44%3A1%3C37%3AOSSEOA%
3E2.0.CO%3B2-4.  

3. Mitzenmacher, M. (2003). "A brief history of generative models for 
power law and lognormal distributions". Internet Mathematics 1: 226–
251. http://www.internetmathematics.org/volumes/1/2/pp226_251.pdf.  

4. Newman, M. E. J. (2005). "Power laws, Pareto distributions and Zipf's 
law". Contemporary Physics 46: 323–351. 
doi:10.1080/00107510500052444. 
http://www.journalsonline.tandf.co.uk/openurl.asp?genre=article&doi=
10.1080/00107510500052444.  

5. Clauset, A., Shalizi, C. R. and Newman, M. E. J. (2009). "Power-law 
distributions in empirical data". SIAM Review 51: 661–703. doi:10.1137/ 
070710111. http://arxiv.org/abs/0706.1062.  

6. Ubiquity Mark Buchanan(2000) Wiedenfield & Nicholson ISBN 0297 
643762 

7. Zipf's law  
8. Power laws, Pareto distributions and Zipf's law  
9. Zipf, Power-laws, and Pareto - a ranking tutorial  
10. Gutenberg-Richter Law  
11. Stream Morphometry and Horton's Laws  



P. G. GYARMATI: SOME WORDS ABOUT NETWORKS 
------------------------------------------------------------------------------------------------------------------------------- 

 144 

12. Clay Shirky on Institutions & Collaboration: Power law in relation to the 
internet-based social networks  

13. Clay Shirky on Power Laws, Weblogs, and Inequality  
14. "How the Finance Gurus Get Risk All Wrong" by Benoit Mandelbrot & 

Nassim Nicholas Taleb. Fortune, July 11, 2005.  
15. "Million-dollar Murray": power-law distributions in homelessness and 

other social problems; by Malcolm Gladwell. The New Yorker, February 
13, 2006.  

16. Benoit Mandelbrot & Richard Hudson: The Misbehaviour of Markets 
(2004)  

17. Philip Ball: Critical Mass: How one thing leads to another (2005)  
18. Tyranny of the Power Law from The Econophysics Blog  
19. So You Think You Have a Power Law — Well Isn't That Special? from 

Three-Toed Sloth, the blog of Cosma Shalizi, Professor of Statistics at 
Carnegie-Mellon University.  



P. G. GYARMATI: SOME WORDS ABOUT NETWORKS 
------------------------------------------------------------------------------------------------------------------------------- 

 145 

 

 

21. Pareto principle 
The Pareto principle (also known as the 80-20 rule, the law of the vital few, 
and the principle of factor sparsity) states that, for many events, roughly 
80% of the effects come from 20% of the causes. Business management 
thinker Joseph M. Juran suggested the principle and named it after Italian 
economist Vilfredo Pareto, who observed in 1906 that 80% of the land in 
Italy was owned by 20% of the population; he developed the principle by 
observing that 20% of the pea pods in his garden contained 80% of the peas. 
It is a common rule of thumb in business; e.g., "80% of your sales come from 
20% of your clients." Mathematically, where something is shared among a 
sufficiently large set of participants, there must be a number k between 50 
and 100 such that k% is taken by (100 − k)% of the participants. k may vary 
from 50 (in the case of equal distribution) to nearly 100 (when a tiny 
number of participants account for almost all of the resource). There is 
nothing special about the number 80% mathematically, but many real 
systems have k somewhere around this region of intermediate imbalance in 
distribution. 
The Pareto principle is only tangentially related to Pareto efficiency, which 
was also introduced by the same economist. Pareto developed both 
concepts in the context of the distribution of income and wealth among the 
population. 

In economics 
The original observation was in connection with income and wealth. Pareto 
noticed that 80% of Italy's wealth was owned by 20% of the population. He 
then carried out surveys on a variety of other countries and found to his 
surprise that a similar distribution applied. 

Because of the scale-invariant nature of the power law relationship, the 
relationship applies also to subsets of the income range. Even if we take the 
ten wealthiest individuals in the world, we see that the top three (Warren 
Buffett, Carlos Slim Helú, and Bill Gates) own as much as the next seven put 
together.  

A chart that gave the inequality a very visible and comprehensible form, the 
so-called 'champagne glass' effect, was contained in the 1992 United 
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Nations Development Program Report, which showed the distribution of 
global income to be very uneven, with the richest 20% of the world's 
population controlling 82.7% of the world's income.  

 
 

 Distribution of world GDP  in 1989  

Quintile of population Income 

Richest 20% 82.70% 

Second 20% 11.75% 

Third 20% 2.30% 

Fourth 20% 1.85% 

Poorest 20% 1.40% 

 

The Pareto Principle has also been 
used to attribute the widening 
economic inequality in the USA to 
'skill-biased technical change' – i.e. 
income growth accrues to those with 
the education and skills required to 
take advantage of new technology 
and globalization. However, Nobel 
Prize winner in Economics Paul 
Krugman in the New York Times 
dismissed this "80-20 fallacy" as being 
cited "not because it's true, but 
because it's comforting." He asserts 
that the benefits of economic growth 
over the last 30 years have largely 
been concentrated in the top 1%, 
rather than the top 20%. 

In software 

In computer science and engineering control theory such as for 
electromechanical energy converters, the Pareto principle can be applied to 
optimization efforts.  

Microsoft also noted that by fixing the top 20% of the most reported bugs, 
80% of the errors and crashes would be eliminated.  
In computer graphics the Pareto principle is used for ray-tracing: 80% of rays 
intersect 20% of geometry.  

Other applications 

In the systems science discipline, Epstein and Axtell created an agent-based 
simulation model called Sugarscape, from a decentralized modeling 
approach, based on individual behavior rules defined for each agent in the 
economy. Wealth distribution and Pareto's 80/20 Principle became 
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emergent in their results, which suggests that the principle is a natural 
phenomenon.  
The Pareto Principle also applies to a variety of more mundane matters: one 
might guess approximately that we wear our 20% most favored clothes 
about 80% of the time, perhaps we spend 80% of the time with 20% of our 
acquaintances, etc. 
The Pareto principle has many applications in quality control. It is the basis 
for the Pareto chart, one of the key tools used in total quality control and 
six sigma. The Pareto principle serves as a baseline for ABC-analysis and 
XYZ-analysis, widely used in logistics and procurement for the purpose of 
optimizing stock of goods, as well as costs of keeping and replenishing that 
stock.  

The Pareto principle was a prominent part of the 2007 bestseller The 4-Hour 
Workweek by Tim Ferriss. Ferriss recommended focusing one's attention on 
those 20% that contribute to 80% of the income. More notably, he also 
recommends firing those 20% of customers who take up the majority of 
one's time and cause the most trouble.  
In human developmental biology the principle is reflected in the gestation 
period where the embryonic period constitutes 20% of the whole, with the 
foetal development taking up the rest of the time. 
In health care in the United States, it has been found that 20% of patients 
use 80% of health care resources.  

Mathematical notes 
The idea has rule-of-thumb application in many places, but it is commonly 
misused. For example, it is a misuse to state that a solution to a problem 
"fits the 80-20 rule" just because it fits 80% of the cases; it must be implied 
that this solution requires only 20% of the resources needed to solve all 
cases. Additionally, it is a misuse of the 80-20 rule to interpret data with a 
small number of categories or observations. 
Mathematically, where something is shared among a sufficiently large set of 
participants, there will always be a number k between 50 and 100 such that 
k% is taken by (100 − k)% of the participants; however, k may vary from 50 in 
the case of equal distribution (e.g. exactly 50% of the people take 50% of the 
resources) to nearly 100 in the case of a tiny number of participants taking 
almost all of the resources. There is nothing special about the number 80, 
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but many systems will have k somewhere around this region of 
intermediate imbalance in distribution. 
This is a special case of the wider phenomenon of Pareto distributions. If 
the parameters in the Pareto distribution are suitably chosen, then one 
would have not only 80% of effects coming from 20% of causes, but also 80% 
of that top 80% of effects coming from 20% of that top 20% of causes, and so 
on (80% of 80% is 64%; 20% of 20% is 4%, so this implies a "64-4" law; and a 
similarly implies a "51.2-0.8" law). 

80-20 is only shorthand for the general principle at work. In individual cases, 
the distribution could just as well be, say, 80-10 or 80-30. (There is no need 
for the two numbers to add up to 100%, as they are measures of different 
things, e.g., 'number of customers' vs 'amount spent'). The classic 80-20 
distribution occurs when the gradient of the line is −1 when plotted on log-
log axes of equal scaling. Pareto rules are not mutually exclusive. Indeed, 
the 0-0 and 100-100 rules always hold. Adding up to 100 leads to a nice 
symmetry. For example, if 80% of effects come from the top 20% of sources, 
then the remaining 20% of effects come from the lower 80% of sources. This 
is called the "joint ratio", and can be used to measure the degree of 
imbalance: a joint ratio of 96:4 is very imbalanced, 80:20 is significantly 
imbalanced (Gini index: 60%), 70:30 is moderately imbalanced (Gini index: 
40%), and 55:45 is just slightly imbalanced. 
The Pareto Principle is an illustration of a "power law" relationship, which 
also occurs in phenomena such as brush-fires and earthquakes because it is 
self-similar over a wide range of magnitudes; it produces outcomes 
completely different from Gaussian distribution phenomena. This fact 
explains the frequent breakdowns of sophisticated financial instruments, 
which are modeled on the assumption that a Gaussian relationship is 
appropriate to - for example - stock movement sizes.  

Equality measures 

 Gini coefficient and Hoover index 

Using the "A : B" notation (for example, 0.8:0.2) and with A + B = 1, 
inequality measures like the Gini index and the Hoover index can be 
computed. In this case both are the same. 
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Theil index 

The Theil index is an entropy measure used to quantify inequities. The 
measure is 0 for 50:50 distributions and reaches 1 at a Pareto distribution of 
82:18. Higher inequities yield Theil indices above 1.  
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22. Natural monopoly 
In economics, a natural monopoly occurs when, due to the economies of 
scale of a particular industry, the maximum efficiency of production and 
distribution is realized through a single supplier, but in some cases 
inefficiency may take place. 

Natural monopolies arise where the largest supplier in an industry, often 
the first supplier in a market, has an overwhelming cost advantage over 
other actual or potential competitors. This tends to be the case in industries 
where capital costs predominate, creating economies of scale which are 
large in relation to the size of the market, and hence high barriers to entry; 
examples include public utilities such as water services and electricity.  
It is very expensive to build transmission networks (water/gas pipelines, 
electricity and telephone lines), therefore it is unlikely that a potential 
competitor would be willing to make the capital investment needed to even 
enter the monopolist's market. 
It may also depend on control of a particular natural resource. Companies 
that grow to take advantage of economies of scale often run into problems 
of bureaucracy; these factors interact to produce an "ideal" size for a 
company, at which the company's average cost of production is minimized. 
If that ideal size is large enough to supply the whole market, then that 
market is a natural monopoly. 
Some free-market-oriented economists argue that natural monopolies exist 
only in theory, and not in practice, or that they exist only as transient states.  

Explanation 
All industries have costs associated with entering them. Often, a large 
portion of these costs is required for investment. Larger industries, like 
utilities, require enormous initial investment. This barrier to entry reduces 
the number of possible entrants into the industry regardless of the earning 
of the corporations within.  

Natural monopolies arise where the largest supplier in an industry, often 
the first supplier in a market, has an overwhelming cost advantage over 
other actual or potential competitors; this tends to be the case in industries 
where fixed costs predominate, creating economies of scale which are large 
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in relation to the size of the market - examples include water services and 
electricity. It is very expensive to build transmission networks (water/gas 
pipelines, electricity and telephone lines), therefore it is unlikely that a 
potential competitor would be willing to make the capital investment 
needed to even enter the monopolist's market. 

Companies that grow to take advantage of economies of scale often run 
into problems of bureaucracy; these factors interact to produce an "ideal" 
size for a company, at which the company's average cost of production is 
minimized. If that ideal size is large enough to supply the whole market, 
then that market is a natural monopoly. 
 

A further discussion and understanding requires more microeconomics: 
Two different types of cost are important in microeconomics: marginal 
cost, and fixed cost. The marginal cost is the cost to the company of serving 
one more customer. In an industry where a natural monopoly does not 
exist, the vast majority of industries, the marginal cost decreases with 
economies of scale, then increases as the company has growing pains 
(overworking its employees, bureaucracy, inefficiencies, etc.).  

Along with this, the average cost of its products will decrease and then 
increase again. A natural monopoly has a very different cost structure. A 
natural monopoly has a high fixed cost for a product that does not depend 
on output, but its marginal cost of producing one more good is roughly 
constant, and small. 

A firm with high fixed costs will require a large number of customers in 
order to retrieve a meaningful return on their initial investment. This is 
where economies of scale become important. Since each firm has large 
initial costs, as the firm gains market share and increases its output the 
fixed cost (what they initially invested) is divided among a larger number of 
customers. Therefore, in industries with large initial investment 
requirements, average total cost declines as output increases over a much 
larger range of output levels. 
Once a natural monopoly has been established because of the large initial 
cost and that, according to the rule of economies of scale, the larger 
corporation (to a point) has lower average cost and therefore a huge 
advantage. With this knowledge, no firms attempt to enter the industry and 
an oligopoly or monopoly develops. 
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Industries with a natural monopoly 

Utilities are often natural monopolies. In industries with a standardized 
product and economies of scale, a natural monopoly will often arise. In the 
case of electricity, all companies provide the same product, the 
infrastructure required is immense, and the cost of adding one more 
customer is negligible, up to a point. Adding one more customer may 
increase the company's revenue and lowers the average cost of providing 
for the company's customer base. So long as the average cost of serving 
customers is decreasing, the larger firm will more efficiently serve the entire 
customer base. Of course, this might be circumvented by differentiating the 
product, making it no longer a pure commodity. For example, firms may 
gain customers who will pay more by selling "green" power, or non-
polluting power, or locally-produced power. 

Historical example 
Such a process happened in the water industry in nineteenth century 
Britain. Up until the mid-nineteenth century, Parliament discouraged 
municipal involvement in water supply; in 1851, private companies had 60% 
of the market. 

 Competition amongst the companies in larger industrial towns lowered 
profit margins, as companies were less able to charge a sufficient price for 
installation of networks in new areas. In areas with direct competition (with 
two sets of mains), usually at the edge of companies' territories, profit 
margins were lowest of all.  

Such situations resulted in higher costs and lower efficiency, as two 
networks, neither used to capacity, were used. With a limited number of 
households that could afford their services, expansion of networks slowed, 
and many companies were barely profitable. With a lack of water and 
sanitation claiming thousands of lives in periodic epidemics, 
municipalisation proceeded rapidly after 1860, and it was municipalities 
which were able to raise the finance for investment which private 
companies in many cases could not.  
A few well-run private companies which worked together with their local 
towns and cities (gaining legal monopolies and thereby the financial 
security to invest as required) did survive, providing around 20% of the 
population with water even today.  
The rest of the water industry in England and Wales was reprivatized in the 
form of 10 regional monopolies in 1989. 
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Origins of the term 

The original concept of natural monopoly is often attributed to John Stuart 
Mill, who (writing before the marginalist revolution) believed that prices 
would reflect the costs of production in absence of an artificial or natural 
monopoly.[2] In Principles of Political Economy Mill criticized Smith's neglect 
of an area that could explain wage disparity. Taking up the examples of 
professionals such as jewelers, physicians and lawyers, he said,  

"The superiority of reward is not here the consequence of competition, but 
of its absence: not a compensation for disadvantages inherent in the 
employment, but an extra advantage; a kind of monopoly price, the effect 
not of a legal, but of what has been termed a natural monopoly... 
independently of... artificial monopolies [i.e. grants by government], there 
is a natural monopoly in favor of skilled laborers against the unskilled, which 
makes the difference of reward exceed, sometimes in a manifold 
proportion, what is sufficient merely to equalize their advantages. If 
unskilled laborers had it in their power to compete with skilled, by merely 
taking the trouble of learning the trade, the difference of wages might not 
exceed what would compensate them for that trouble, at the ordinary rate 
at which labor is remunerated. But the fact that a course of instruction is 
required, of even a low degree of costliness, or that the laborer must be 
maintained for a considerable time from other sources, suffices everywhere 
to exclude the great body of the laboring people from the possibility of any 
such competition. 
So Mill's initial use of the term concerned natural abilities, in contrast to the 
common contemporary usage, which refers solely to market failure in a 
particular type of industry, such as rail, post or electricity. Mill's 
development of the idea is that what is true of labor is true of capital.  
"All the natural monopolies (meaning thereby those which are created by 
circumstances, and not by law) which produce or aggravate the disparities 
in the remuneration of different kinds of labor, operate similarly between 
different employments of capital. If a business can only be advantageously 
carried on by a large capital, this in most countries limits so narrowly the 
class of persons who can enter into the employment, that they are enabled 
to keep their rate of profit above the general level. A trade may also, from 
the nature of the case, be confined to so few hands, that profits may admit 
of being kept up by a combination among the dealers. It is well known that 
even among so numerous a body as the London booksellers, this sort of 
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combination long continued to exist. I have already mentioned the case of 
the gas and water companies. 
Mill also used the term in relation to land, for which the natural monopoly 
could be extracted by virtue of it being the only land like it. Furthermore, 
Mill referred to network industries, such as electricity and water supply, 
roads, rail and canals, as "practical monopolies", where "it is the part of the 
government, either to subject the business to reasonable conditions for the 
general advantage, or to retain such power over it, that the profits of the 
monopoly may at least be obtained for the public." So, a legal prohibition 
against competition is often advocated and rates are not left to the market 
but are regulated by the government. 

Regulation 

As with all monopolies, a monopolist who has gained his position through 
natural monopoly effects may engage in behavior that abuses his market 
position, which often leads to calls from consumers for government 
regulation. Government regulation may also come about at the request of a 
business hoping to enter a market otherwise dominated by a natural 
monopoly. 

Common arguments in favor of regulation include the desire to control 
market power, facilitate competition, promote investment or system 
expansion, or stabilize markets. In general, though, regulation occurs when 
the government believes that the operator, left to his own devices, would 
behave in a way that is contrary to the government's objectives. In some 
countries an early solution to this perceived problem was government 
provision of, for example, a utility service. However, this approach raised its 
own problems. Some governments used the state-provided utility services 
to pursue political agendas, as a source of cash flow for funding other 
government activities, or as a means of obtaining hard currency. These and 
other consequences of state provision of services often resulted in 
inefficiency and poor service quality. As a result, governments began to 
seek other solutions, namely regulation and providing services on a 
commercial basis, often through private participation.  
As a quid pro quo for accepting government oversight, private suppliers 
may be permitted some monopolistic returns, through stable prices or 
guaranteed through limited rates of return, and a reduced risk of long-term 
competition. (See also rate of return pricing). For example, an electric utility 
may be allowed to sell electricity at price that will give it a 12% return on its 
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capital investment. If not constrained by the public utility commission, the 
company would likely charge a far higher price and earn an abnormal profit 
on its capital. 

Regulatory responses: 
o doing nothing  
o setting legal limits on the firm's behavior, either directly or through a 

regulatory agency  
o setting up competition for the market (franchising)  
o setting up common carrier type competition  
o setting up surrogate competition ("yardstick" competition or 

benchmarking)  
o requiring companies to be (or remain) quoted on the stock market  
o public ownership  

Since the 1980s there is a global trend towards utility deregulation, in which 
systems of competition are intended to replace regulation by specifying or 
limiting firms' behavior; the telecommunications industry is a leading 
example globally. 

Doing nothing 

Because the existence of a natural monopoly depends on an industry's cost 
structure, which can change dramatically through new technology (both 
physical and organizational/institutional), the nature or even existence of 
natural monopoly may change over time. A classic example is the 
undermining of the natural monopoly of the canals in eighteenth century 
Britain by the emergence in the nineteenth century of the new technology 
of railways. 

Arguments from public choice suggest that regulatory capture is likely in 
the case of a regulated private monopoly. Moreover, in some cases the 
costs to society of overzealous regulation may be higher than the costs of 
permitting an unregulated private monopoly. (Although the monopolist 
charges monopoly prices, much of the price increase is a transfer rather 
than a loss to society.) 
More fundamentally, the theory of contestable markets developed by 
Baumol and others argues that monopolists (including natural monopolists) 
may be forced over time by the mere possibility of competition at some 
point in the future to limit their monopolistic behavior, in order to deter 
entry. In the limit, a monopolist is forced to make the same production 
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decisions as a competitive market would produce. A common example is 
that of airline flight schedules, where a particular airline may have a 
monopoly between destinations A and B, but the relative ease with which in 
many cases competitors could also serve that route limits its monopolistic 
behavior. The argument even applies somewhat to government-granted 
monopolies, as although they are protected from competitors entering the 
industry, in a democracy excessively monopolistic behavior may lead to the 
monopoly being revoked, or given to another party. 
Nobel economist Milton Friedman, said that in the case of natural monopoly 
that "there is only a choice among three evils: private unregulated 
monopoly, private monopoly regulated by the state, and government 
operation." He said "the least of these evils is private unregulated 
monopoly where this is tolerable." He reasons that the other alternatives 
are "exceedingly difficult to reverse" and that the dynamics of the market 
should be allowed the opportunity to have an effect and are likely to do so 
(Capitalism and Freedom). In a Wincott Lecture, he said that if the 
commodity in question is "essential" (for example: water or electricity) and 
the "monopoly power is sizeable," then "either public regulation or 
ownership may be a lesser evil." However, he goes on to say that such 
action by government should not consist of forbidding competition by law. 
Friedman has taken a stronger laissez-faire stance since, saying that "over 
time I have gradually come to the conclusion that antitrust laws do far more 
harm than good and that we would be better off if we didn't have them at 
all, if we could get rid of them" (The Business Community's Suicidal Impulse). 
Advocates of laissez-faire capitalism, such as libertarians, typically say that 
permanent natural monopolies are merely theoretical. Economists from the 
Austrian school claim that governments take ownership of the means of 
production in certain industries and ban competition under the false 
pretense that they are natural monopolies.  

Franchising and outsourcing 

Although competition within a natural monopoly market is costly, it is 
possible to set up competition for the market. This has been, for example, 
the dominant organizational method for water services in France, although 
in this case the resulting degree of competition is limited by contracts often 
being set for long periods (30 years), and there only being three major 
competitors in the market. 
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Equally, competition may be used for part of the market (e.g. IT services), 
through outsourcing contracts; some water companies outsource a 
considerable proportion of their operations. The extreme case is Welsh 
Water, which outsources virtually its entire business operations, running 
just a skeleton staff to manage these contracts. Franchising different parts 
of the business on a regional basis (e.g. parts of a city) can bring in some 
features of "yardstick" competition (see below), as the performance of 
different contractors can be compared. See also water privatization. 

Common carriage competition 
This involves different firms competing to distribute goods and services via 
the same infrastructure - for example different electricity companies 
competing to provide services to customers over the same electricity 
network. For this to work requires government intervention to break up 
vertically integrated monopolies, so that for instance in electricity, 
generation is separated from distribution and possibly from other parts of 
the industry such as sales. The key element is that access to the network is 
available to any firm that needs it to supply its service, with the price the 
infrastructure owner is permitted to charge being regulated. (There are 
several competing models of network access pricing.) In the British model 
of electricity liberalization, there is a market for generation capacity, where 
electricity can be bought on a minute-to-minute basis or through longer-
term contracts, by companies with insufficient generation capacity (or 
sometimes no capacity at all). 

Such a system may be considered a form of deregulation, but in fact it 
requires active government creation of a new system of competition rather 
than simply the removal of existing legal restrictions. The system may also 
need continuing government fine tuning, for example to prevent the 
development of long-term contracts from reducing the liquidity of the 
generation market too much, or to ensure the correct incentives for long-
term security of supply are present. See also California electricity crisis. 
Whether such a system is more efficient than possible alternatives is 
unclear; the cost of the market mechanisms themselves are substantial, and 
the vertical de-integration required introduces additional risks. This raises 
the cost of finance - which for a capital intensive industry (as natural 
monopolies are) is a key issue. Moreover, such competition also raises 
equity and efficiency issues, as large industrial consumers tend to benefit 
much more than domestic consumers. 
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Stock market 

One regulatory response is to require that private companies running 
natural monopolies be quoted on the stock market. This ensures they are 
subject to certain financial transparency requirements, and maintains the 
possibility of a takeover if the company is mismanaged. The latter in theory 
should help ensure that company is efficiently run. By way of example, the 
UK's water economic regulator, Ofwat, sees the stock market as an 
important regulatory instrument for ensuring efficient management of the 
water companies. 
In practice, the notorious short-termism of the stock market may be 
antithetical to appropriate spending on maintenance and investment in 
industries with long time horizons, where the failure to do so may only have 
effects a decade or more hence (which is typically long after current chief 
executives have left the company). 

Public ownership 

A traditional solution to the regulation problem, especially in Europe, is 
public ownership. This 'cuts out the middle man': instead of government 
regulating a firm's behavior, it simply takes it over (usually by buy-out), and 
sets itself limits within which to act. 

Network effects 
Network effects are considered separately from natural monopoly status. 
Natural monopoly effects are a property of the producer's cost curves, 
whilst network effects arise from the benefit to the consumers of a good 
from standardization of the good. Many goods have both properties, like 
operating system software and telephone networks. 
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23. The rich get richer and the poor get poorer 
"The rich get richer and the poor get poorer" is a catchphrase and proverb, 
frequently used (with variations in wording) in discussing economic 
inequality. 

Predecessors 
Andrew Jackson, in his 1832 bank veto, said that when the laws undertake... 
to make the rich richer and the potent more powerful, the humble 
members of society... have a right to complain of the injustice to their 
Government.  

William Henry Harrison said, in an October 1, 1840 speech, I believe and I say 
it is true Democratic feeling, that all the measures of the government are 
directed to the purpose of making the rich richer and the poor poorer.  

In 1821, Percy Bysshe Shelley argued, in A Defense of Poetry (not published 
until 1840), that in his England, "the promoters of utility" had managed to 
exasperate at once the extremes of luxury and want. They have exemplified 
the saying, “To him that hath, more shall be given; and from him that hath 
not, the little that he hath shall be taken away.” The rich have become 
richer, and the poor have become poorer; and the vessel of the State is 
driven between the Scylla and Charybdis of anarchy and despotism. Such 
are the effects which must ever flow from an unmitigated exercise of the 
calculating faculty.  
The phrase resembles the Bible verse: For whosoever hath, to him shall be 
given, and he shall have more abundance: but whosoever hath not, from 
him shall be taken away even that he hath.  
However, in this verse Jesus is not referring to economic inequality at all. 
Rather it is part of his answer to the question "Why speakest thou unto 
them in parables?" Jesus says his parables give fresh understanding only to 
those who already have accepted his message. 

"Ain't We Got Fun" 
A version of the phrase was popularized in 1921 in the wildly successful song 
Ain't We Got Fun, and the phrase sometimes attributed to the song's 
lyricists, Gus Kahn and Raymond B. Egan. Oddly, the lyrics never actually say 
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that the poor get "poorer;" instead it takes off from or alludes to the line, 
showing that it was already proverbial. They cue the listener to expect the 
word "poorer," but instead say 

There's nothing surer: The rich get rich and the poor get—children;  
and, later: 

There's nothing surer: The rich get rich and the poor get laid off;  
Note too that the Kahn and Egan lyrics say "the rich get rich," not richer.  
The line is sometimes mistakenly attributed to F. Scott Fitzgerald. It appears 
in The Great Gatsby, as 
the rich get richer[sic] and the poor get—children!  

The character Gatsby orders the character Klipspringer, sitting at the piano, 
"Don't talk so much, old sport.... "Play!" and Klipspringer breaks into the 
Kahn and Egan song.  

In political and economic rhetoric 
The line is often cited by opponents of capitalism as a statement of fact and 
by supporters of capitalism as an example of an erroneous belief. Thus, 
The modern-day statistical work of Stanley Lebergott and Michael Cox 
confirms this Smithian view and disputes the commonly held criticism that 
under a free markets the rich get richer and the poor get poorer.  
According to Marx, capitalism will inevitably lead to ruin in accordance with 
certain laws of economic movement. These laws are "the Law of the 
Tendency of the Rate of Profit to Fall," "the Law of Increasing Poverty," and 
"the Law of Centralization of Capital." Small capitalists go bankrupt, and 
their production means are absorbed by large capitalists. During the 
process of bankruptcy and absorption, capital is gradually centralized by a 
few large capitalists, and the entire middle class declines. Thus, two major 
classes, a small minority of large capitalists, and a large proletarian majority 
are formed.[13] 
A use of the phrase by a free market advocates disputing the claim is: 

Relative cohort inequity decreased markedly, with the poor improving their 
position much faster than the rich. Relative percentile inequity increased 
slightly. In terms of buying power, both the poor cohort and the poor 
percentile became significantly wealthier. These data indicate that the view 
that the rich are getting richer and the poor are getting poorer is clearly 
over-generalized.  
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In the United States the phrase has been used frequently (in the past tense) 
to describe alleged socioeconomic trends under the Ronald Reagan and 
George H. W. Bush presidencies. Defenders of the Reagan policies 
characterize this claim as inciting class warfare.  

Commentators refer to the idea as a cliché in discussions of economic 
inequality, but one that they argue to be accurate nonetheless: 
It's a cliché, perhaps, to say that "the rich get rich and the poor get poorer". 
But in the 1980s and 1990s, cliché or not, that is what took place in some 
regions of the world, particularly in South Asia and sub-Saharan Africa.  
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24.Ain't We Got Fun? 
For the 1937 Merrie Melodies cartoon, see Ain't We Got Fun (cartoon). 
 

 
Cover page to the sheet music. 

By Billy Jones, 1921. for Edison Records. 
 

"Ain't We Got Fun?" is a popular foxtrot published in 1921 with music by 
Richard A. Whiting, lyrics by Raymond B. Egan and Gus Kahn. 

It was first performed in 1920 in the revue Satires of 1920, then moved into 
vaudeville and recordings. "Ain't We Got Fun?" and both its jaunty response 
to poverty and its promise of fun "Every morning / Every evening", and "In 
the meantime, / In between time" have become symbolic of the Roaring 
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Twenties, and it appears in some of the major literature of the decade, 
including The Great Gatsby by F. Scott Fitzgerald and in Dorothy Parker's 
award-winning short story of 1929, "Big Blonde". 

Composition 
"Ain't We Got Fun" follows the structure of a foxtrot. The melody uses 
mainly quarter notes, and has an unsyncopated refrain made up largely of 
variations on a repeated four-note phrase.  

The Tin Pan Alley Song Encyclopedia describes it as a "Roaring Twenties 
favorite" and praises its vibrancy, "zesty music", and comic lyrics.  
Philip Furia, connecting Kahn's lyrics to the song's music, writes that: 
Not only does Kahn use abrupt, colloquial--even ungrammatical--phrases, he 
abandons syntax for the telegraphic connections of conversation. 
Truncated phrases like not much money are the verbal equivalent of 
syncopated musical fragments.  
—Philip Furia, The Poets of Tin Pan Alley:  

A History of America's Great Lyricists Critical appraisals vary regarding what 
view of poverty the song's lyrics take. Nicholas E. Tawa summarizes the 
refrain Ain't we got fun as a satirical and jaunty rejoinder toward hard times. 
Diane Holloway and Bob Cheney, authors of American History in Song: Lyrics 
from 1900 to 1945, concur, and describe the black humor in the couple's 
relief that their poverty shields them from worrying about damage to their 
nonexistent Pierce Arrow luxury automobile.  
Yet George Orwell highlights the lyrics of "Ain't We Got Fun" as an example 
of working class unrest: 
All through the war and for a little time afterwards there had been high 
wages and abundant employment; things were now returning to something 
worse than normal, and naturally the working class resisted. The men who 
had fought had been lured into the army by gaudy promises, and they were 
coming home to a world where there were no jobs and not even any 
houses. Moreover, they had been at war and were coming home with a 
soldier's attitude to life, which is fundamentally, in spite of discipline, a 
lawless attitude. There was a turbulent feeling in the air.  

—George Orwell, The Road to Wigan Pier 
After quoting a few of the song's lines Orwell refers to the era as a time 
when people had not yet settled down to a lifetime of unemployment 
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mitigated by endless cups of tea, a turn of phrase which the later writer Larry 
Portis contests.  
He [Orwell] could just as easily have concluded that the song revealed 
certain fatalism, a resignation and even capitulation to forces beyond the 
control of working people. Indeed, it might be only a small step from 
saying, "Ain't we got fun" in the midst of hardship to the idea that the poor 
are happier than the rich--because, as the Beatles intoned, "Money can't 
buy me love." It is possible that "Aint We Got Fun", a product of the music 
industry (as opposed to 'working-class culture') was part of a complex 
resolution of crisis in capitalist society. Far from revealing the indomitable 
spirit of working people, it figured into the means with which they were 
controlled. It is a problem of interpretation laying at the heart of popular 
music, one which emerged with particular clarity at the time of the English 
Industrial Revolution.  

—Larry Portis, Soul Trains 
However, others concentrate on the fun that they got. Stephen J. Whitfield, 
citing lyrics such as "Every morning / Every evening / Ain't we got fun", 
writes that the song "set the mood which is indelibly associated with the 
Roaring Twenties", a decade when pleasure was sought and found 
constantly, morning, evening, and "In the meantime / In between time". 

 
Philip Furia and Michael Lasser see implicit references to sexual intercourse 
in lyrics such as the happy chappy, and his bride of only a year.[11] Looked at in 
the context of the 1920s, an era of increasing sexual freedom, they point 
out that, while here presented within the context of marriage (in other 
songs it is not), the sexuality is notably closer to the surface than in 
previous eras and is presented as a delightful, youthful pleasure.  There are 
several variations on the lyrics. For example, American History in Song 
quotes the lyrics: 

They won't smash up our Pierce Arrow, / We ain't got none  
They've cut my wages / But my income tax will be so much smaller  
When I'm paid off, / I'll be laid off  
Ain't we got fun?  

The sheet music published in 1921 by Jerome K. Remick and Co. leaves this 
chorus out completely, whereas a recording for Edison Records by Billy 
Jones keeps the reference to the Pierce Arrow, but then continues as in the 
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sheet music: "There's nothing surer / The rich get rich and the poor get laid 
off / In the meantime,/ In between time/ Ain't we got fun?"  

Reception and performance history 
It premièred in the show Satires of 1920, where it was sung by Arthur West, 
then entered the vaudeville repertoire of Ruth Roye.[15] A hit recording by 
Van and Schenck increased its popularity, and grew into a popular standard. 
The song appears in the F. Scott Fitzgerald novel The Great Gatsby, when 
Daisy Buchanan and Gatsby meet again after many years, and appears in 
Dorothy Parker's 1929 short story, "Big Blonde". Warner Brothers used the 
song in two musicals during the early 1950s: The Gus Kahn biopic I'll See You 
in My Dreams and The Eddie Cantor Story.[15] Woody Allen used the song in 
his 1983 film Zelig.  

Notable Recordings 
Doris Day for her album "By the Light of the Silvery Moon  
The song was featured in the film "By the Light of the Silvery Moon" (1953), 
and performed by Doris Day and Gordon MacRae. 
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25. Clustering coefficient 
In graph theory, a clustering coefficient is a measure of degree to which 
nodes in a graph tend to cluster together. Evidence suggests that in most 
real-world networks, and in particular social networks, nodes tend to create 
tightly knit groups characterized by a relatively high density of ties (Holland 
and Leinhardt, 1971; Watts and Strogatz, 1998). In real-world networks, this 
likelihood tends to be greater than the average probability of a tie randomly 
established between two nodes (Holland and Leinhardt, 1971; Watts and 
Strogatz, 1998). 
Two versions of this measure exist: the global and the 
local. The global version was designed to give an overall 
indication of the clustering in the network, whereas the 
local gives an indication of the embeddedness of single 
nodes. 

Global clustering coefficient 
The global clustering coefficient is based on triplets of 
nodes. A triplet is three nodes that are connected by either 
two (open triplet) or three (closed triplet) undirected ties. 
A triangle consists of three closed triplets, one centered on 
each of the nodes. The global clustering coefficient is the 
number of closed triplets (or 3 x triangles) over the total 
number of triplets (both open and closed). The first 
attempt to measure it was made by Luce and Perry (1949). 
This measure gives an indication of the clustering in the 
whole network (global), and can be applied to both 
undirected and directed networks (often called transitivity, 
see Wasserman and Faust, 1994, page 243). 
Formally, it has been defined as: 

3
C


 



number of triangles

number of connected triples of vertices

number of closed triplets

number of connected triples of vertices

 



P. G. GYARMATI: SOME WORDS ABOUT NETWORKS 
------------------------------------------------------------------------------------------------------------------------------- 

 171 

A generalization to weighted networks was proposed by Opsahl and 
Panzarasa (2009), and a redefinition to two-mode networks (both binary 
and weighted) by Opsahl (2009). 
 

Local clustering coefficient 
The local clustering coefficient of the light blue node is computed as the 
proportion of connections among its neighbors which are actually realized 
compared with the number of all possible connections. In the figure, the 
light blue node has three neighbors, which can have a maximum of 3 
connections among them. In the top part of the figure all three possible 
connections are realized (thick black segments), giving a local clustering 
coefficient of 1. In the middle part of the figure only one connection is 
realized (thick black line) and 2 connections are missing (dotted red lines), 
giving a local cluster coefficient of 1/3. Finally, none of the possible 
connections among the neighbors of the light blue node are realized, 
producing a local clustering coefficient value of 0. 
The local clustering coefficient of a vertex in a graph quantifies how close 
its neighbors are to being a clique (complete graph). Duncan J. Watts and 
Steven Strogatz introduced the measure in 1998 to determine whether a 
graph is a small-world network. 
A graph G = (V,E) formally consists of a set of vertices V and a set of edges E 
between them. An edge eij connects vertex i with vertex j. 
The neighborhood N for a vertex vi is defined as its immediately connected 
neighbors as follows: 

: { }i j ij jiN v e E e E     

We define ki as the number of vertices, | Ni | , in the neighborhood, Ni, of a 
vertex. 
The local clustering coefficient Ci for a vertex vi is then given by the 
proportion of links between the vertices within its neighborhood divided by 
the number of links that could possibly exist between them. For a directed 
graph, eij is distinct from eji, and therefore for each neighborhood Ni there 
are ki(ki − 1) links that could exist among the vertices within the 
neighborhood (ki is the total (in + out) degree of the vertex). Thus, the local 
clustering coefficient for directed graphs is given as 

|{ } |
: , ,

( 1)
 jk

i j k i jk
i i

e
C v v N e E

k k
  


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An undirected graph has the property that eij and eji are considered 

identical. Therefore, if a vertex vi has ki neighbors, 
( 1)

2
i ik k 

 edges could 

exist among the vertices within the neighborhood. Thus, the local 
clustering coefficient for undirected graphs can be defined as 

2 |{ } |
: , ,

( 1)
 jk

i j k i jk
i i

e
C v v N e E

k k
  


 

Let λG(v) be the number of triangles on ( )v V G  for undirected graph G. 
That is, λG(v) is the number of subgraphs of G with 3 edges and 3 vertices, 
one of which is v. Let τG(v) be the number of triples onv G  . That is, τG(v) 
is the number of subgraphs (not necessarily induced) with 2 edges and 3 
vertices, one of which is v and such that v is incident to both edges. Then 
we can also define the clustering coefficient as 

( )
( )

G
i

G

vC
v




  

It is simple to show that the two preceding definitions are the same, since 
1( ) ( , 2) ( 1)
2G i i iv C k k k     

These measures are 1 if every neighbor connected to vi is also connected to 
every other vertex within the neighborhood, and 0 if no vertex that is 
connected to vi connects to any other vertex that is connected to vi. 

Network average clustering coefficient 
The clustering coefficient for the whole network is given by Watts and 
Strogatz as the average of the local clustering coefficients of all the vertices 
n : 

1

1 n

i
i

C C
n 

   

A graph is considered small-world, if its average clustering coefficient C  is 
significantly higher than a random graph constructed on the same vertex 
set, and if the graph has approximately the same mean-shortest path length 
as its corresponding random graph. 
A generalization to weighted networks was proposed by Barrat et al. 
(2004), and a redefinition to bipartite graphs (also called two-mode 
networks) by Latapy et al. (2008) and Opsahl (2009).  
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This formula is not, by default, defined for graphs with isolated vertices; see 
Kaiser, (2008) and Barmpoutis et al, The networks with the largest possible 
average clustering coefficient are found to have a modular structure, and at 
the same time, they have the smallest possible average distance among the 
different nodes.  
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26.Degree distribution 
In the study of graphs and networks, the degree of a node in a network is 
the number of connections it has to other nodes and the degree 
distribution is the probability distribution of these degrees over the whole 
network. 
This figure here is an in/out degree-distribution for a hyperlink graph 
(logarithmic scales). 
 

Definition 
The degree of a 
node in a 
network 
(sometimes 
referred to 
incorrectly as 
the connectivity) 
is the number of 
connections or 
edges the node 
has to other 
nodes. If a 
network is directed, meaning that edges point in one direction from one 
node to another node, then nodes have two different degrees, the in-
degree, which is the number of incoming edges, and the out-degree, which 
is the number of outgoing edges. 
The degree distribution P(k) of a network is then defined to be the fraction 
of nodes in the network with degree k. Thus if there are n nodes in total in a 
network and nk of them have degree k, we have P(k) = nk/n. 
The same information is also sometimes presented in the form of a 
cumulative degree distribution, the fraction of nodes with degree greater 
than or equal to k. 

Observed degree distributions 
The degree distribution is very important in studying both real networks, 
such as the Internet and social networks, and theoretical networks. The 
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simplest network model, for example, the (Bernoulli) random graph, in 
which each of n nodes is connected (or not) with independent probability p 
(or 1 − p), has a binomial distribution of degrees: 

11
( ) (1 ) ,k n kn
P k p p

k
 

       
 (or Poisson in the limit of large n).  

Most networks in the real world, however, have degree distributions very 
different from this. Most are highly right-skewed, meaning that a large 
majority of nodes have low degree but a small number, known as "hubs", 
have high degree. Some networks, notably the Internet, the world wide 
web, and some social networks are found to have degree distributions that 
approximately follow a power law: P(k) ~ k−γ, where γ is a constant. Such 
networks are called scale-free networks and have attracted particular 
attention for their structural and dynamical properties. 
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27. Epilogue 
I have to tell you some word about my success using the contents of this 
book. As a computer scientist I have a great deal of network knowledge, by 
doing many years of research works and giving lectures. Recently, some 
friends of mine who form a community named Szentendre Szalon – 
reachable on web at www.szalon.tk - asked me to tell about networks 
understandable by most of them. They are from a wide scale of human 
knowledge fields spread from the science, engineering through medical as 
far as artists.  
This collection made me possible to systematize the network knowledge 
getting me possible giving commonly understandable performances. We 
are already over half a dozen lectures and looking forward some more in 
the next season. I know that this book requires more thorough groundwork 
from the readers but for a lecturer it is a must. 
I also have other occasions to use this book for. Students in scientific circles 
require more deep knowledge on this field. I already gave lecture-series 
about networks based on this collection and also I looking forward to 
continue, to repeat such series. These students always asked me getting 
electronic copies of the relating chapters.  
This is why I decided to publish the whole collection in one. 
The people must come to learn that the small world relation in written 
format can be first found in a publication from 1929 by a Hungarian 
humorist Karinthy Frigyes: Láncszemek (F. Karinthy: Chain of links). 

It was published in one of his collected work, in which he propagates that 
“Everything is different as you would think of”. And I tell you this is no 
wonder at all! Wise people could prove it by their statements.  
Let me represent this by citing two famous man wise, and full opposite 
sayings: 
P. Erdős: “God likes take risks.” 

A. Einstein: “God not plays roulette with the Universe.” 
In conclusion I wish everybody success using this networking breviary. 
 

~~~~~ 
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