3. A fényforrások működtető szerelvényei


3.1 Foglalatok

A foglalatok a fényforrások mechanikai rögzítésén kívül azok áramellátását is biztosítják. A különböző foglalatfajták közül legismertebbek az Edison menetes izzólámpa-foglalatok. Leggyakoribb változataik E14, E27 vagy E40 menethüvellyel készülnek, ahol az E betű az Edison-menetre, az utána következő szám a menetes rész mm-ben kifejezett átmérőjére utal. A foglalatok névleges feszültsége és áramterhelhetősége ritkán szokott problémát okozni, a szokásos 250 V 4 A a legtöbb alkalmazáshoz megfelel. A nagyobb problémát a melegedés okozza, a hagyományos bakelitfoglalatok általában legfeljebb 60 W teljesítményű izzólámpához használatosak. Nagyobb teljesítményű fényforrás használata a foglalatok elszenesedését, tönkremenetelét okozhatja. A lámpatest adattábláján vagy a foglalatra, esetleg a foglalat mellé ragasztott címkén megadott teljesítményt soha nem szabad túllépni.

Egyes izzólámpás lámpatestekben lehet hőálló bakelitfoglalat is. A nagyobb hőállóságú foglalatot a foglalat anyagába préselt T betű és az utána következő szám jelöli, ahol a szám azt a °C -ban kifejezett hőmérsékletet jelenti, amelyen a foglalat tartósan használható. Az ilyen foglalatokat csak hasonló hőállóságú típussal szabad helyettesíteni.

A porcelánból készült foglalatoknál a foglalat túlmelegedésének veszélye nem áll fenn, de a foglalatba kötött vezeték szigetelése, vagy a foglalatba csavart fényforrás túlmelegedhet, ezért a névleges teljesítményt ilyenkor sem szabad túllépni.

Az Edison menetes foglalatokat nagynyomású fényforrások üzemeltetésére is használják. Itt az esetleges foglalatcserekor agy újabb szempontot is figyelembe kell venni: ezek a lámpák olyan gyújtókészülékekkel együtt üzemelnek, amelyek a bekapcsoláskor többezer V-os feszültséglökést is előállíthatnak. Mivel ez a feszültséglökés csak rövid ideig hat, nem szükséges, hogy a foglalatokat ilyen feszültség tartós elviselésére méretezzék. A gyakorlati tapasztalatok azt mutatták, hogy a foglalatok (de a lámpatestek egyéb részei is) a névleges feszültségük 4,3-szorosát viselik el biztonságosan a gyújtás idejére. Ebből az következik, hogy egy 250 V névleges feszültségű foglalatra a 2 kV feszültségimpulzust előállító gyújtókészülék még rákapcsolható. A foglalat bekötésénél azonban bizonyos biztonsági szabályokat be kell tartani: mivel a foglalat megérinthető részei és a menethüvelye között sokkal kisebb a távolság, mint a megérinthető részek és a talpérintkező között, ezért a gyújtókészülékről jövő vezetéket mindig a távolabb elhelyezett, tehát biztonságosabb talpérintkezőhöz kell kötni.

Érintésvédelmi alapszabály, hogy a feszültség alatt álló részeket úgy kell szigetelni, hogy a veszélyes feszültség alatt álló részeket ne lehessen megérinteni, még a szabad kézzel leszerelhető részek eltávolítása után sem. Ez alól az alapszabály alól egyetlen kivétel van: az Edison menet. Az ilyen foglalatok vagy biztosítóaljzatok feszültség alatti részei a lámpa vagy a biztosítóbetét kicsavarása után megérinthetők. Bár állandóan újabb és újabb szabadalmak jelennek meg ennek az érintésvédelmi hiányosságnak a megszüntetésére, a gyakorlatban nagyon kevés ilyen jellegű áramütéses beleset fordul elő. Ezért rövid időn belül nem várható, hogy az igen széles körben elterjedt Edison-menetes foglalatok valamilyen más megoldásnak adják át a helyüket.

A halogénlámpák foglalatai a szokásos lámpakiviteleknek megfelelően vagy a tűlábas lámpafejek befogadására alkalmasak, vagy a két végükön fejelt ceruzalámpák üzemeltetését teszik lehetővé. Ezek a foglalatok a fellépő jelenős melegedés miatt kivétel nélkül nagy hőállóságú kerámia anyagból készülnek. A fellépő nagy áramerősségek miatt igen nagy jelentőséggel bír az érintkezők anyaga és felületvédelme is. Foglalatcserénél, de bármilyen más alkatrész cseréjénél is ügyelni kell arra, hogy ha az eredetivel pontosan megegyező típus nem szerezhető be, olyan helyettesítő típust válasszunk, amelynek mechanikai méretei mellett a villamos jellemzői is egyenértékűek. Csak olyan foglalatot használjunk, amelyen megtalálható a villamos biztonság jele. A biztonsági jelekről a lámpatestek fejezet tartalmaz részletesebb információt.

A két végükön fejelt, egyenes fénycsövek kétcsapos foglalatainál ritkán fordul elő biztonsági vagy minőségi probléma. A fénycsövek árama és melegedése viszonylag jelentéktelen, így a foglalatok túlterhelése nem jelent gyakorlati veszélyt. A fénycsövek eltérő hossza kizárja azt, hogy egy foglalatba nagyobb teljesítményű fényforrást helyezzenek, mint amilyenre az adott konstrukció készült.

A fénycsövek foglalatait általában vagy rugózó szerelvénnyel rögzítik, vagy az egyszerűbb megoldású lámpatesteknél ovális furatokba szerelik a rögzítő csavarokat. Mindkét megoldásnak az a célja, hogy a fénycsövek hosszának szórásából eredő méretkülönbségek kiegyenlíthetők legyenek. Rugós rögzítésnél ez automatikusan megvalósul, ovális furatok alkalmazása esetén a foglalat rögzítő csavarjait meglazítva állítható be az ideális távolság.

A kompakt fénycsövek működtető elektronikával ellátott változatai minden további nélkül becsavarhatók a hagyományos menetes foglalatokba. A külön előtéttel működő kompakt fénycsövekhez rendkívül sokféle foglalat létezik, a foglalatváltozatok célja, hogy minden lámpa csak abba a foglalatba legyen bedugható, amelyhez az adott lámpa működtetésére szolgáló további alkatrészek csatlakoznak.

A bajonett foglalatok Magyarországon általános világítási célra nem terjedtek el, egyedül a járművek lámpáinál használják széles körben.


3.2 Előtétek, kondenzátorok

A fényforrások ismertetésénél említettük a villamos kisüléseknek azt a fizikai sajátosságát, hogy a kisülés megindulása után az áram minden határon túl nőne. Ha nem korlátoznánk valamilyen módon az áram növekedését, a fényforrás pillanatokon belül tönkretenné saját magát.

Az áramkorlátozás legleterjedtebb módja a fojtótekercs rendszerű előtétek alkalmazása (ezeket szokták induktív vagy mágneses előtéteknek is nevezni). Ezek az előtétek olyan vasmagos tekercsek, amelyek impedanciáját úgy állítják be, hogy a megfelelő lámpával összekapcsolva a lámpán a névleges áram folyjon keresztül. Ezt a névleges áramértéket minden előtéten feltüntetik. Megtalálható az előtéteken azoknak a lámpáknak a típus szerinti felsorolása is, amelyek az adott előtéttel működtethetők.

A legfontosabb adat, az áramérték mellett az előtéteken további műszaki adatokat is feltüntetnek. Ezek közül az úgynevezett tw értéket érdemes megemlíteni, amely az előtét hőállóságára utal. A jelölést követő számérték azt a °C-ban megadott hőmérsékletet adja meg, amelyen az előtét tartósan működtethető. Meghatározása annak a feltételezésével történik, hogy ilyen hőmérséklet mellett az előtét szigetelő anyagainak termikus öregedése olyan lassú legyen, hogy az előtét várható élettartama érje el a 10 évet. A tw érték ellenőrzése rövidített, általában 30 napos élettartam-vizsgálattal történik. Az ettől eltérő élettartam-vizsgálatot külön jelölik, pl. a D6 jelölés 60 napos élettartam-vizsgálatot jelent, ahol a D betűt követő szám a vizsgálat hossza dekádokban, azaz 10 napos időközökben megadva.

A nagyobb tw érték egyértelműen jobb minőséget, tartósabb szigetelőanyagok alkalmazását jelenti. A lámpatest előtétjét soha ne cseréljük az eredetinél rosszabb minőségű típusra. A mai korszerű előtétek tw értéke általában 130, a gyengébb minőségűeké 105°C.

Az elmondottak azonban nem jelentik azt, hogy egy 105°C -os előtétet érdemes nagyobb hőállóságúra cserélni. A lámpatestek konstrukciója biztosítja ugyanis azt, hogy az előtét melegedése ne haladja meg a megengedettet, így a legalább 10 éves élettartammal minden esetben számolni lehet.

Az előtétek másik fontos műszaki adata az előtét által felvett teljesítmény, ami veszteségként jelentkezik, mert a fényforrás fogyasztásához hozzáadódik az előtét fogyasztása is. Az előtét veszteségét a gyártók ritkán tüntetik fel az adattáblán, a katalógusadatok között sem mindig szerepel. Újabban elterjedőben van egy olyan osztályozási rendszer, amely az előtét-lámpa áramkör által felvett teljesítmény mérésén alapul. Az előtéteket eszerint A, B, C és D osztályokba sorolják, a legkisebb veszteségű előtétek az A osztályúak, energetikailag a legkedvezőtlenebbek a D osztályúak. Az A és B osztályokat tovább bontják A1, A2, A3, B1, B2, B3 alosztályokra. Fojtótekercs rendszerű előtéttel legfeljebb a B kategória érhető el, az A osztályt csak elektronikus elemekkel lehet megvalósítani. Az ismertetett osztályozási rendszer az EEI oszályozás.

Nézzük meg a legáltalánosabban használt 36 W-s fénycső példáján, hogy a különböző osztályok mekkora tényleges fogyasztást jelentenek:

A1: 38 - 19 W között szabályozható
A2: legfeljebb 36 W
A3: legfeljebb 38 W
B1: legfeljebb 41 W
B2: legfeljebb 43 W
C: legfeljebb 45 W
D: 45 W felett

(Felmerülhet a kérdés, hogy az A2 osztálynál hogyan lehet a 36 W-s fénycső teljesítményfelvétele előtéttel együtt is kevesebb, mint 36W. A válasz az, hogy ezek a kapcsolások elektronikus előtétekkel működnek, és ilyen előtétekkel a fénycső által kisugárzott fényáram megnő. Ahhoz, hogy az elektronikus előtéttel működő cső ugyanannyi fényt adjon, mint az induktív előtéttel működő, kisebb teljesítmény is elég. Így a fénycső teljesítménye valójában nem 36 W, hanem annál valamivel kevesebb.)

Az induktív, fojtótekercs rendszerű előtétekkel sorbakapcsolt lámpák áramköreiben az induktív jellegű terhelés hatására a hálózati feszültség és a lámpaáram között fáziseltolódás lép fel. Ennek hatására a kapcsolás által felvett áram a fázistényezővel (cos fi ) fordított arányban megnő. Ez a fölöslegesen nagy áram a hálózatot terheli, és megnöveli a vezetékeken fellépő feszültségesést. A teljesítménytényező javítására központi fázisjavítást vagy a lámpaáramkörrel párhuzamosan kapcsolt egyedi fázisjavító kondenzátort szoktak alkalmazni.

A fázisjavítás másik módja a két áramkörös lámpatestekben alkalmazott duókapcsolás. Ennél a kapcsolásnál az egyik fénycső áramköre a szokásos módon működik, a másik cső azonban egy soros kondenzátoron keresztül kapcsolódik a hálózatra (3.1 ábra).

3.1. ábra. Fénycsövek duókapcsolása
VG - előtét
L - fénycső
S - fénycsőgyújtó
K - soros kondenzátor


A kapacitív és az induktív ág fázistényezője azonos értékű, de ellenkező előjelű, tehát a teljes kapcsolás eredő fázistényezője egységnyi. A kapacitív ágban lévő sorbakapcsolt kapacitás és induktivitás mintegy rezgőkört alkot, amelynek hatására a kondenzátoron mérhető feszültség nagyobb, mint a hálózat feszültsége. Ezért az itt használt, soros kondenzátorok névleges feszültsége nagyobb, megengedett tűrése pedig kisebb, mint a párhuzamos kondenzátoroké. A soros és párhuzamos kondenzátorok adatait a 3.1. táblázat foglalja össze.

3.1. táblázat. A fénycsövek kondenzátorainak műszaki adatai

Az elektronikus előtétek a fojtótekercsekétől teljesen eltérő működési elven alapulnak. Legfontosabb elemük az az áramkör, amely a hálózati váltakozó áraménál sokkal nagyobb, kb. 30 kHz körüli frekvenciájú rezgést állít elő. Ehhez az oszcillátorhoz egy olyan kimenő transzformátor kapcsolódik, amely terheletlen állapotban a fénycső gyújtófeszültségét biztosítja. Az alkalmazott magasabb frekvencia miatt ez a transzformátor kis méretű és súlyú, ferritmagos típusú lehet.

Terhelt állapotban, tehát a kisülés megindulása után a kapcsolás áramgenerátorként működik, vagyis a lámpa névleges áramának megfelelő értékre szabályozza be az áramot. A fénycsövek elektronikus előtétjei a fénycső katódjainak előfűtését is biztosíthatják, de léteznek olyan típusok is, amelyek előfűtés nélkül, azonnal gyújtanak. Ez a kímélő üzemmód a fénycsövek élettartamára jótékony hatással van, elektronikával működtetve a fénycső élettartama kb. másfélszeresére nő a hagyományos kapcsolásokhoz képest. Az előtétbe épített szabályozó elemek gondoskodnak arról is, hogy a kiégett, gyújtásképtelen fénycsövet lekapcsolják

Az elektronikus áramkörök működéséhez szükséges egyenfeszültséget a hálózati feszültség egyenirányításával nyerik, ezért a legtöbb elektronikus előtét egyaránt működtethető egyen- vagy váltakozó áramról. Az egyenfeszültségű, pl. akkumulátortelepes táplálásnak a tartalékvilágítás esetén van szerepe. Az előtét áramkörei általában további védő és szűrő elemekkel egészülnek ki, amelyek egyrészt arról gondoskodnak, hogy az előtét ne zavarhassa meg más elektronikus készülékek működését, másfelől pedig az előtétet védik a hálózaton időnként (pl. villámcsapások hatására) megjelenő feszültségimpulzusok vagy más villamos zavarok károsító hatásától.

Az elektronikus áramkörök saját vesztesége lényegesen kisebb az induktív előtétekénél, ezért az ilyen elemekkel ellátott lámpatestek a villamos energiát jobb hatásfokkal alakítják át fénnyé.

A lámpák fényének folyamatos szabályozása (fénycsökkentés, dimmelés) kizárólag elektronikus előtétekkel oldható meg.

Elektronikus előtéteket leginkább fénycsövekhez készítenek, de megjelentek már a nagynyomású lámpák kisebb teljesítményű típusaihoz használható készülékek is.

Az elektronikus előtétek lényeges adatai a teljesítményen kívül a környezeti hőmérséklet megengedett határai (általában -20 és 50 °C) valamint a készülék külső felületének legnagyobb megengedett hőmérséklete. Ez utóbbit tc-vel jelölik, amit a hőmérséklet megengedett értéke követ. Mivel nem mindegy, hogy ez a legnagyobb hőmérséklet a felület melyik pontján alakul ki, a kritikus helyet az előtét felületére rajzolt fekete ponttal meg is szokták jelölni.


3.3 Gyújtók

A parázsfénykisüléses gyújtókról a fénycsövek kapcsán már esett szó. A nagynyomású lámpák gyújtókészülékei elektronikus áramkörök, amelyek a lámpa begyújtásához szükséges. előírt nagyságú és fázishelyzetű gyújtóimpulzust hozzák létre. Régebbi, olcsó típusaik a lámpa működtetéséhez egyébként is szükséges előtét induktivitását használták fel az impulzus előállítására. Az ilyen gyújtók használata esetén a gyújtóimpulzus megjelenik az előtéten és az előtétet a foglalattal összekötő vezetékszakaszon is, ezért ezeket az elemeket olyan szigeteléssel kell ellátni, amely elviseli ezeket a feszültségimpulzusokat. A hosszú vezetékek szórt kapacitása miatt az előtét és a foglalat közötti távolság nem lehet túl nagy. Az ilyen, ma már korszerűtlensége miatt ritkán alkalmazott eszközöket nevezik kétpontos vagy párhuzamos gyújtóknak.

A korszerű gyújtókészülékek a gyújtóimpulzus előállításához szükséges összes elemet tartalmazzák, így az impulzus előállítása ez előtéttől független. Ebben az esetben elegendő csak a gyújtókészüléket elhelyezni a fényforrás közelében, az esetenként jelentős súlyú előtét távol, pl. a lámpaoszlop aljában is lehet. Ezeket a gyújtókat nevezik soros vagy hárompontos gyújtókészülékeknek.

A legkorszerűbb gyújtókészülékek felismerik, hogy a lámpa a gyújtóimpulzus hatására begyújtott-e. Ha a gyújtás bármilyen okból nem történik meg, a gyújtókészülék időzítése a további gyújtóimpulzusok keltését egy idő után leállítja (a gyújtóimpulzusok állandó jelenléte zavarhatja a rádió- és tévékészülékeket, valamint a lámpatest idő előtti meghibásodásához is vezethet).

A hárompontos gyújtókészülékek bekötési vázlata a 3.2. ábrán látható.

3.2. ábra. Gyújtókészülék kapcsolása

Az elektronikus előtétekhez hasonlóan a gyújtókészülékeken is feltüntetik a felület legkritikusabb pontjának megengedett melegedését, amit itt is tc -vel jelölnek.


[ Kezdőlap | Következő fejezet ]